【正文】
我還要感謝我們礦物加工系的屈啟龍、李俠等老師,是他們教會了我選礦的專業(yè)知識,給我做本次試驗打下了牢固的專業(yè)知識。試驗中,他細心的指導(dǎo)我,讓我養(yǎng)成了親自動手的好習(xí)慣。致謝此次畢業(yè)論文是對我大學(xué)四年學(xué)習(xí)結(jié)果的一個整理總結(jié),是把我所學(xué)的書本知識轉(zhuǎn)化為實踐,指導(dǎo)并順利完成試驗。鈮和TQ在有機相中形成TQ[Nb2(SO4)3]3。兩種元素用20%氫氧化鈉洗滌剝離,%鈣的影響。兩體積33%。對于摩爾濃度。%%時的最高值84%。結(jié)果表明隨著接觸時間的延長,浸出率并沒有明顯的變化,而且15分鐘已經(jīng)出現(xiàn)了最大值,%。這可能是因為提取劑TQ對不同濃度酸的能力不同。3 結(jié)果及討論 提取試驗在硝酸銨存在下,曾用環(huán)己酮從硫酸鹽浸出液中提取70%的鈮礦物。最后一步是用33%的氫氧化銨從溶液中沉淀鈮礦物。表1為礦樣的所含元素及其賦存狀態(tài)。殘渣在酒精中用蒸餾水處理,過濾,然后再DMF/水中再結(jié)晶從而得到TQ。2 試驗 萃取劑以β二元酮1,3環(huán)己烷為原料制作的雜環(huán)氮化合物被用來作為提鈮萃取劑。以酮類和TBP為基礎(chǔ)的處理方法在鈮提取工業(yè)化上深受喜愛。采選能力跟隨這種形式也在增加,尤其是巴西礦冶公司計劃在2008年年處理鈮礦量達到185噸。 then it was ignited at 900 ℃. The analysis by SEM showed that its purity reached %。 . trioctylamine(TOA) and tribenzylamine (TBA). Processes based on ketones and TBP have been found acceptance in industrialscale operations.Synthesis of triazolo quinazolinone as condensed ring systems is of considerable interest because of the diverse range of their biological properties. The present work deals with the synthesis of multidentate heterocyclic nitrogen ligand. For this purpose, sulfate leach liquor was prepared from leaching a multiple oxides niobium bearing minerals obtained from KadaboraCentral Eastern of Egypt.2 Experimental Synthesis of extractantThe βdiketone 1,3 cyclohexane dione was selected as starting material to prepare a heterocyclic nitrogen pound to be used as an extractant for niobium ions. A suspension of 1,3 cyclohexane dione was heated under reflux with dimethyl formamide dimethyl acetal(DMF DMA) for 3 h. After cooling to room temperature, the obtained enaminone was properly crystallized from hexane. Next, it reacted under reflux with aminotriazole in ethanol for 6 h followed by the addition of catalytic amount of pipredine. The residual solid was taken in ethanol and washed with distilled water. After filtration, recrystallization from DMF/water was done to afford the corresponding fused heterocyclic 8,9dihydro[1,2,4]triazolo[1,5a]quinazolin 6(7H)one symbolized by TQ. Characteristic of ore sampleThe ore sample used in this study was collected from a multiple oxide mineralization Kadabora Batholiths situated in the Eastern Desert of Egypt. It was ground to<74 μm and was subjected to Xray diffraction analysis using Philips Xray diffractometer model PW 223/20 operated at 40 kV and 20 mA. It revealed the presence of multiple oxides refractory minerals. The elemental analysis was done using scanning electron microscope (CAM SCAN series 4 ISIS 200 E/X system with pentajet detector, University of Leeds, England). Table 1 summarizes the obtained minerals and the average elemental chemical position of different sample spots.Table 1 Mineralogical and elemental position of ore sample collected from Kadabora Batholiths in Eastern Desert of EgyptMineralogical positionSamarskite(ASTM card )Fergusonite(ASTM card No. 9443)Betafite(ASTM card No. 8300)Pyrochlore(ASTM card )Mass fraction of elemental position*/%C ONaAlSiCaTiFeYNbCeNdTaU Recovery of niobiumThe ground ore sample (15 g) was mixed with 100mL sulfuric acid ( mol/L). The obtained slurry was agitated for 2 h at 150℃and the insoluble residue left behind was separated by filtration. The chemical position of the obtained leach liquor is given in Table 2. Several batch solvent extraction experiments were done by using the synthesized organic multidentate extractant TQ dissolved in methylene chloride as diluent. The extraction step was followed by the stripping step in which equal volumes of the loaded extractant and the stripping agents (distilled water, mol/L HF or ) were shaken for 15 min to back extract niobium. The final step in the treatment is represented by precipitation of niobium from the strip solution using 33% ammonium hydroxide. The obtained final product was analyzed for its chemical position and purity by SEM .The determination of niobium concentration whether in the prepared leach liquors or in the aqueous raffinate solutions (after extraction) or else in the stripping solutions was performed by pyrogallol. The analysis was performed with a double beam UVVIS recording Shimadzu UV160A spectrophotometerTable 2 Some elements of interest posed (100 mL) ofsulfate leach liquorElementNbTaTiCeYUFeConcentration/(g(3)經(jīng)鹽酸選擇性浸出尾礦中的脈石礦物,%,%。 酸洗對尾礦Nb2O5指標的影響酸洗前Nb2O5%酸洗樣品質(zhì)量g浸渣質(zhì)量g浸渣Nb2O5%浸渣鈮的富集比6655,經(jīng)酸洗,浸渣中Nb2O5品位進一步提高,—%,—。它們在酸性溶液中的穩(wěn)定性可以用標準PHo來衡量,PHo小的礦物難于浸出,PHo大的容易浸出?!孢€原礦鐵精礦指標的影響,I=℃、45min還原礦在不同激磁電流強度下進行磁選所得尾礦Nb2O5指標。%,%,說明此時絕大部分赤鐵礦已被還原成磁鐵礦,故收率達到最高。(a)還原溫度對25min還原鐵精礦指標的影響,I=(b)還原溫度對45min還原鐵精礦指標的影響,I=(c)還原溫度對65min還原鐵精礦指標的影響,I=(d)還原溫度對85min還原鐵精礦指標的影響,I=℃還原礦精礦指標的影響。說明高于750℃,發(fā)生了過還原,降低了還原礦的磁性,導(dǎo)致收率下降。由圖可看出,當還原時間為25min時,隨著還原溫度的升高,精礦鐵收率一直上升,說明25min時間內(nèi),700—850℃溫度范圍,還原反應(yīng)以磁化還原(即,赤鐵礦還原為磁鐵礦)為主;當還原時間為45min時,還原溫度為750℃時,收率達到最高,繼續(xù)升高溫度,收率保持穩(wěn)定。與此同時,原礦中的螢石、云石等低熔點的脈石礦物,在還原過程中熔融,并與部分磁鐵礦發(fā)生燒結(jié)??煽闯觯ご烹娏髟龃?,精礦鐵收率隨之明顯增大,達到90%以上。說明還原礦主要物相為磁鐵礦。而其余大多數(shù)低含量物相由于衍射表達能力不強而未給出清晰的衍射峰。(XRD)圖。700℃時碳尚未氣化,還原反應(yīng)以直接還原為主,反應(yīng)速率緩慢,還原度較低。這是由于固體碳還原鐵氧化物的反應(yīng)體系中,只有當固體碳發(fā)生氣化,產(chǎn)生大量CO時,還原反應(yīng)才能以快速的間接還原方式進行,促進鐵氧化物的還原。在045min范圍內(nèi),還原度R隨著反應(yīng)時間的增加而迅速增大,超過45min后趨于平緩。將焙燒礦磨至200目,用SCQS74—Φ50型磁選管進行磁選,獲得鐵精礦和尾礦。稱取定量混好的礦,按一定比例稱取活性炭,將二者在瑪瑙研缽中研磨、混勻,用水玻璃作為粘接劑,在YP8T型壓片機上壓片,將壓好的片在真空干燥箱中進行干燥,以備還原實驗用。首先按配比,精確稱量分析純級的Fe2O3(或CaO)和Nb2O5,放進研缽研磨均勻,用水作粘結(jié)劑,用壓片機壓制成片,在烘干箱中進行干燥處理;最后,把干燥后的試樣放入剛玉坩堝,裝入真空碳管爐中,進行高溫固相合成。對酸浸而言,原料在酸性溶液中的穩(wěn)定性可以用標準PHo來衡量,PHo小的難于浸出,PHo大的容易浸出。因此,對較強磁性和較弱磁性顆粒在磁選機中成功分選的必要條件是:作用在較強磁性顆粒的磁力必須大于作用在其上的所有與磁力方向相反的機械力的合力,同時,作用在較弱磁性顆粒上的磁力必須小于相應(yīng)的機械力之和。%,此時還原焙燒效果最好?;钚蕴坑缮綎|淄博華光化工廠提供,固定碳含量為98%、灰分<1%。由于受到“八五”、“九五”期間生產(chǎn)的粗鈮精礦數(shù)量的限制,我們以200目的合成鈮鐵礦/鈮鈣礦、赤鐵礦和稀選尾礦(、)為原料,配置了模擬粗鈮精礦,其中Nb2O5=%。然而,粗鈮精礦在工業(yè)上不能直接應(yīng)用。磁選分離被還原的金屬鐵和其他礦物, 得到含Nb2O5 %的