freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學研究性學習論文-資料下載頁

2025-11-06 06:39本頁面
  

【正文】 學生研究性學習的開展提供有力支持。要特別注意發(fā)展校外指導教師隊伍,構建起指導學生研究性學習的人才資源庫。(二)教育行政部門對研究性學習的管理 研究性學習對于培養(yǎng)學生的創(chuàng)新精神和實踐能力具有重大意義。教育行政部門必須從推進和深化素質(zhì)教育的高度充分認識開展研究性學習的意義,增強教育改革的緊迫感,選擇合乎實際的推進策略,切實履行管理職責,使研究性學習在學校中得以實施。,可采取先試點,再在面上推進的工作策略,積極創(chuàng)造條件,爭取一兩年內(nèi)做到全面實施。教師培訓是開展研究性學習的關鍵。地方教育行政部門、學校和有關的教育研究、教師培訓機構都要十分重視,通過多種形式開展教師培訓工作,制訂近期和中長期的培訓計劃,并切實加以落實。,提高對培養(yǎng)學生創(chuàng)新精神和實踐能力重要性和迫切性的認識,促使教師更新知識,樹立終身學習的觀念,提高教師自身的科研素養(yǎng)和教師指導學生開展研究性學習的能力。在培訓中,要幫助教師了解并掌握一些指導學生開展研究性學習的具體方法,尤其要讓教師在不同類型的案例剖析中獲得多方面的啟示。鼓勵、支持教師對研究位學習實施問題的探究,促進教師專業(yè)水平的提高。,開拓思路,積極引導,加強素質(zhì)教育的輿論宣傳工作,支持和幫助學校開辟校外學習、研究的渠道,發(fā)展教育系統(tǒng)與外系統(tǒng)的聯(lián)系,在創(chuàng)設有利于開展研究性學習的社會環(huán)境上發(fā)揮作用。,組織區(qū)域性的、校際的經(jīng)驗交流活動,鼓勵先進,積極推動。要針對地區(qū)差異和學校類型差異,進行分層、分類指導,注意扶植、幫助有困難的地區(qū)和學校。(包括課程落實、制度建設、資源利用等方面的情況)的檢查內(nèi)容,并把它作為學校評優(yōu)和示范性高中建設的重要指標之一。、科研機構的作用。各級教研、科研機構具有指導本地學校開設研究性學習的職能。要組織力量開展切實的研究、指導工作。要及時發(fā)現(xiàn)和總結學校、教師在實踐中的成功經(jīng)驗,加以推廣應用,并根據(jù)學校、教師的實際問題和困難,采取針對性的指導措施,或向行政領導部門提出建議。更多范文,敬請登陸范文大全網(wǎng)()!第三篇:高中數(shù)學研究性學習如何選題高中數(shù)學研究性學習如何選題從科學研究的意義上講,發(fā)現(xiàn)問題比解決問題更重要,科學家們都認為,提出問題是學得真知的關鍵一步,一個人在學習的過程中,假如提不出問題,那么就很難想像他真正地學到了什么。因此,研究性學習的主要途徑即是研究小型的課題,課題是對問題的解決的策劃。那么,高中數(shù)學研究性學習如何選題呢? 一、高中數(shù)學 研究性課題的選擇原則。選題要有一定的創(chuàng)造價值和社會價值,能促進學生的發(fā)展和提高。問題是科學思維的起點,讓學生運用所學知識通過數(shù)學建模去解決問題。選擇的課題適合學生的能力和知識水平及相關物質(zhì)條件。二、高中數(shù)學研究性課題的來源。學生通過自己居住的生活環(huán)境及所接觸的現(xiàn)實生活,從中發(fā)現(xiàn)問題并提出與數(shù)學有關的研究性課題。、焦點問題。學生通過新聞媒體及所接觸的周圍人群了解當前的熱門話題,從中提出與數(shù)學有關的研究性課題。數(shù)學教材是研究課題的重要來源,教師要求學生注意這些研究性學習問題的討論,因它與課本內(nèi)容聯(lián)系密切。三、高中數(shù)學研究性學習的課題類型。即對基礎知識的研究,這是學生研究課題中的最低層次。通過對社會的研究調(diào)查,提出研究性學習的課題。在學生研究性學習課程中,最高的研究層次應是創(chuàng)新發(fā)明。通過自已的努力,以科技創(chuàng)造為目標,進行認真的科技發(fā)明嘗試,并能取得成果。在研究性學習中,經(jīng)過研究探索寫出學術論文,這個層次較高。四、高中數(shù)學的研究性課題選擇舉例(1)洗衣服是我們生活中最平常不過的事情,但從中可得出一個研究性課題?!疤接懭詣映绦蛳孪匆聶C在漂洗時用水設計中的數(shù)學原理:1)為什么設計成等量注水? 2)分3次注水的合理性是什么?”(2)調(diào)查報亭賣報情況(進價、售價及賣不出去而退回每份報紙賠錢多少)統(tǒng)計一個月的銷售情況,為報亭主人決策,使之收益最大。(3)現(xiàn)在很多人家都安裝了太陽能熱水器,請你用所學的數(shù)學等知識說明在各個不同季節(jié),熱水器安放的傾斜角為何值時,可使正午時陽光直射熱水器,從而取得最大熱效率。根據(jù)你的研究,你可以向熱水器生產(chǎn)廠提何建議?(1)足球運動員在射門時,面對對方守門員,射門時的角度、球速與守門員撲球時的移動速度有何關系,能將球射入球門?足球運動員在何處射門最好(不考慮其它因素)?(3)調(diào)查保險公司養(yǎng)老保險險種及分紅方法,某人在40歲時參加保險,或將應交保額逐年存入銀行,假設此人預期壽命為75歲,請你對這兩種投資方式進行比較,確定此人是投保收益大,還是存銀行收益大。,從教材中取得課題:新編的高中數(shù)學教材(練習部分)已經(jīng)為我們提供了大量的研究性學習的課題。(1)如在學完數(shù)列后,有的學生提出有沒有“等和數(shù)列”和“等積數(shù)列”呢?這樣教師可提出研究性課題:“等和數(shù)列、等積數(shù)列的性質(zhì)研究?!保?)在學完圓錐曲線這一章后,可提出研究性課題:“拋物線的焦點弦的性質(zhì)研究”和“圓錐曲線的焦點弦的性質(zhì)研究”。如最優(yōu)化問題:(1)無蓋盒子的最大容積問題,用一張邊長為a的正方形鐵皮,如何制作一個無蓋長方體盒子,使其容積最大?(2)零件供應站(最省問題):設在一條流水線上有5臺機器工作,我們要在流水線上設立一個檢驗站,經(jīng)檢驗合格后才能進行下一道工序,若5臺機器的工作效率相同,問檢驗臺放在何處可使移動零件所走的距離之和最小?(所花的總費用最省)如果是n臺呢?若5臺機器的效率不同又如何呢?(3)拍照取景角最大問題:在公路的一側從A至B有一排樓房,想在公路上的任何一處拍一張正面照,選擇公路上的任何點,使拍攝的一排樓房的取景最大??傊?,在實施數(shù)學研究性學習時,課題可以在課堂上也可以課外布置給學生,另外,教師可作適當?shù)狞c撥指導,但要重視學生的參與過程,目的是達到開發(fā)學生智力、提高學生學習數(shù)學的興趣。第四篇:高中數(shù)學研究性學習課題集錦高中數(shù)學研究性學習課題集錦一、課本知識延伸型空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的各類問題。整理求定義域的規(guī)則及類型(特別是復合函數(shù)的類型)。求函數(shù)的值域、單調(diào)區(qū)間、最小正周期等有關問題時,往往希望將自變量在一個地方出現(xiàn),所以變量集中的原則就提供了解題的方向,試研究所有與變量集中原則有關的類型(如配方法、帶余除法等)??偨Y求函數(shù)值域的有關方法,探索判別式法的一般情形——實根分布的條件用于求值域。利用條件最值的幾何背景進行命題演變,與命題分類?;仡櫧庵笖?shù)、對數(shù)方程(不等式)的化歸實質(zhì)(利用外層函數(shù)的單調(diào)性去掉兩邊的外層函數(shù)的符號),我們稱之為“給函數(shù)更衣”,于是我們可以隨心所欲地將方程(不等式)進行演變。你能利用這一點編擬一些好題嗎。探求“反函數(shù)是它本身”的所有函數(shù)。從而可解決一類含抽象函數(shù)的方程,概括所有這種方程的類型。在原點有定義的奇函數(shù),其隱含條件是f(0)=0,試以這一事實編擬、演變命題。把兩面鏡子相對而立,若你處于其中,將看到許多肖像位置呈現(xiàn)出周期性,你能把這一事實數(shù)學化嗎?若把軸對稱改為中心對稱又怎么結論?對于含參數(shù)的方程(不等式),若已知解的情況確定參數(shù)的取值范圍,我們通常用函數(shù)思想及數(shù)形結合思想進行分離參數(shù),試概括問題的類型,總結分離參數(shù)法。1改變含參數(shù)的方程(不等式)的主元與參數(shù)的地位進行命題的演變。探索換主元的功能。1數(shù)形結合是數(shù)學中的重要的思想方法之一,而單位圓中的三角函數(shù)線卻被人們所遺忘,試探它在解決三角問題中的數(shù)形結合功能。1整理三角代換的的類型,及其能解決的哪幾類問題。1一個三角公式不僅能正用,還需會逆用與變用,試將后者整理之。1三角形的形狀判定中,對于含邊角混合關系的條件,利用正、余弦定理總有兩種轉化,即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。1一個數(shù)學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮其反面進行求解得解集,然后再取其補集即得原命題的解。我們把它稱為“補集法”,試整理常見的類型的補集法。1概括使用均值不等式求最值問題中的“湊”的技巧,及拆項、添項的技巧。1觀察式子的結構特征,如分析式子中的指數(shù)、系數(shù)等啟示證題的的方向。1探求一些著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深對不等式的理解。整理常用的一些代換(三角代換、均值代換等),探索它在命題轉化中的功能。2考慮均值不等式的變換,及改變之后的不等式的背景意義。2分母為多項式的輪換對稱不等式,由于難以參于通分,證明往往較難。探求一種代換,將分母為多項式的轉化為單項式。2關于數(shù)學知識在物理上的應用探索2對于數(shù)學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題,試研究解幾中的各種公式逆用,以充實構造法證明。2我們對待任何問題(包括解決數(shù)學問題)往往用自己的審美意識去審視,以調(diào)節(jié)自己的行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。2整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材,如用點斜式而忽視斜率存在,截距式而忽視截距為零等。2利用角參數(shù)與距離參數(shù)的相互轉化以實現(xiàn)命題的演變,達到以點帶面,觸類旁通的目的。2研究求軌跡問題中的坐標轉移法與參數(shù)法的相互聯(lián)系。2關于斜率為 1的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題策略。解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲線(包括其退化情形如兩條相交線,平行線等)的圓化處理。3整理與焦半徑有關的問題,并將之“純代數(shù)化”,進而研究其“純代數(shù)解法”,從中探索新方法。3把點差法解中點弦問題進行推廣,使之能解決“定比分點弦”問題。3在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著“射影思想”,擴大這思想在解幾中的地位或功能。3與中點弦有關的圓錐曲線中的參數(shù)范圍確定問題,往往需要建立不等式進行求解,各種方法中以點在曲線內(nèi)部條件為隹。試將這方法推廣到定比分點弦的情形。3平幾中證點共線、線共點往往較難,通常出現(xiàn)在競賽中。而立幾中的這類問題卻是非簡單,主要的依據(jù)僅僅是平面的基本性質(zhì):兩個平面的公共點共線??煞駥⑵綆讍栴}的這類問題進行升維處理。即把它轉化為立幾問世題加以解答。3用運變化的觀點對待數(shù)學問題,將會發(fā)現(xiàn)問題的實質(zhì)及問題之間的聯(lián)系,但對于立幾中的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。3作為降維處理的一個例子:可考慮異面直線距離的幾種轉化,如轉化為線面距、點線距、面面距等。3異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數(shù)的觀點來解決。即建立一個兩動點的距離函數(shù),利用求函數(shù)的最小值達到目的。3立幾中的許多問題可化歸為確定點在平面內(nèi)的射影位置。如點面距、點線距、體積等。于是確定點在平面內(nèi)的射影顯得非常重要,試給出一種通用方法進行確定。等積變換在立幾中大顯上內(nèi)身手,而非等積變換是它的一般情形,作用更大,卻被人們所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的相應方法探索之。二、生活應用型(需要學生自己動手去有關部門搜集和整理原始資料)銀行存款利息和利稅的調(diào)查購房貸款決策問題有關房子粉刷的預算關于數(shù)學知識在物理上的應用探索投資人壽保險和投資銀行的分析比較編程中的優(yōu)化算法問題余弦定理在日常生活中的應用證券投資中的數(shù)學環(huán)境規(guī)劃與數(shù)學如何計算一份試卷的難度與區(qū)分度1中國體育彩票中的數(shù)學問題1“開放型題”及其思維對策1中國電腦福利彩票中的數(shù)學問題1城鎮(zhèn)/農(nóng)村飲食構成及優(yōu)化設計1如何安置軍事偵察衛(wèi)星1如何存款最合算1哪家超市最便宜1數(shù)學中的黃金分割2通訊網(wǎng)絡收費調(diào)查統(tǒng)計數(shù)學中的最優(yōu)化問題2水庫的來水量如何計算2計算器對運算能力影響2統(tǒng)計銅陵市月降水量2出租車車費的合理定價2購房貸款決策問題2設計未來的中學數(shù)學課堂2電視機熒屏曲線的擬合函數(shù)的分析2用計算機軟件編制數(shù)學游戲2制作一個數(shù)學的練習與檢查反饋軟件制作較為復雜的數(shù)據(jù)統(tǒng)計表格與分析軟件3制作一個中學生數(shù)學網(wǎng)站3如何計算一份試卷的難度與區(qū)分度3多媒體輔助教學在數(shù)學教學中的作用調(diào)查3零件供應站(最省問題)3拍照取景角最大問題3當?shù)馗囟e的變化情況,預測今后的耕地而積3衣服的價格、質(zhì)地、品牌,左右消費者觀念多少?3如何提高數(shù)學課堂效率3數(shù)學的發(fā)展歷史“開放型題”及其思維對策第五篇:高中數(shù)學研究性學習報告世界近代史上三大數(shù)學猜想——費爾馬大定理現(xiàn)在不少學生認為數(shù)學是一門枯燥乏味、難以學習的學科,那是因為他們沒有體會到數(shù)學的價值就認為數(shù)學是沒有實際意義的學科,學數(shù)學只是為了應付考試。現(xiàn)在的高中生的數(shù)學學習的觀念主要有:(1)學數(shù)學主要靠記憶、模仿;(2)學數(shù)學就是為了在考試中取得好成績;(3)學數(shù)學就是要會做數(shù)學題;(4)學數(shù)學就是要培養(yǎng)一個人的運算能力;(5)學數(shù)學就是用數(shù)學知識解決實際問題這些信念說明了現(xiàn)在的多數(shù)高中生的數(shù)學觀念不夠健全和科學。而數(shù)學史對改變學生的數(shù)學觀念能產(chǎn)生積極的影響,同時對激發(fā)學生學習數(shù)學的興趣十分有幫助。學習數(shù)學史能使學生體會到數(shù)學的價值,認識數(shù)學的本質(zhì)。學習數(shù)學史能調(diào)動學生學習數(shù)學的積極性,激發(fā)學習數(shù)學的興趣。學習數(shù)學史有助于培養(yǎng)學生正確的數(shù)學觀念。學習數(shù)學史有助培養(yǎng)學生的愛國主義思想和民族自尊心。學習數(shù)學史有助于培養(yǎng)學生堅強的意志品質(zhì)和實事求是的態(tài)度以及創(chuàng)新精神。(第二部分世界近代史上三大數(shù)學猜想):① 接下來我們就從下面幾個方面來談談數(shù)學史中最有名的理論或人物。首先請三位同學來說說“世界近代
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1