【導讀】解析:∵c<d,∴-c>-∵a>b>0,∴a-c>b-B.解析:①∵a>|b|≥0,∴a2>b2成立,∴①正確;③取a=4,b=1,c=-1,d=-2,則4×(-1)<1×(-2),故③錯誤;④∵a>b>0,∴0<1a<1b且c<0,∴ca>cb,解析:M-(-5)=x2+y2-4x+2y+5=(x-2)2+(y+1)2,∵x≠2且y≠-1,∴(x-2)2. c>b-c,所以logb(a-c)>loga(a-c)>loga(b-c),①②③均正確,選D.解析:1c-b+1a-c=a-c+c-bc-ba-c=a-bc-ba-c.解析:∵a>1,∴a2+1>2a,2a>a-1.∴m、n、p的大小關(guān)系為m>p>n.①logab>logba;②|logab+logba|>2;③2<1;④|logab|+|logba|>|logab+。令a=12,b=14,則logab=2,logba=12.8.已知12<a<60,15<b<36,則a-b的取值范圍為________,ab的取值范圍為________.。解析:由b的范圍,可求-b的范圍,1b的范圍,再由不等式性質(zhì),可求a-b的范圍,13<ab<4.∴a-b,ab的取值范圍分別為,??????9.設m≠n,x=m4-m3n,y=n3m-n4,比較x與y的大??;當a>1時,a3+1>a2+1,10.已知a>b>c>0,求證:ba-b>ba-c>ca-c.