【導讀】角形是等腰三角形。在同一個三角形中,等角對等邊?!鰽BC是什么三角形,并說明理由。測量河寬AB,小聰從點A出發(fā),方向前進至C,在C處測得∠C=30°這個方法正確嗎?當?shù)捉恰螧=60時,∠C=60°=∠2,則△ABD和△ACD全等嗎?如圖,BD是等腰三角形ABC的底邊。AC上的高線,DE∥BC,交AB于點E.
【總結】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)知識要點基礎練知識點1等腰三角形的性質(zhì)——等邊對等角40°,則它的底角度數(shù)為(D)°°°°,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠
2025-06-17 00:17
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三
2025-06-15 12:08
【總結】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識別等腰三角形的有關邊、角條件
2025-10-31 05:34
【總結】〖教學目標〗◆1、理解等腰三角形的判定方法的證明過程.◆2、通過定理的證明和應用,初步了解轉化思想,并培養(yǎng)學生邏輯思維能力、分析問題和解決問題的能力.◆3、學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辨證唯物主義觀點.〖教學重點與難點〗◆教學重點:等腰三角形的判定方法及其運用.◆教學難點:等腰三角形
2025-11-11 02:16
【總結】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問題1:小區(qū)內(nèi)有一個三角形小花壇,現(xiàn)在想把它分割成兩個三角形,使之可以種上不同的花。你會怎么分?ABCP問題2:如果要分割成兩個等腰三角形呢?原三角形的角度不知道。無法分!從頂點引一條線段問題3:如果花壇
2025-08-15 20:28
【總結】性質(zhì)定理(1)等腰三角形的性質(zhì)定理1:?你能利用已有的公理和定理證明嗎?ACB“等腰三角形的兩個底角相等”(也可以說成“在同一個三角形中,等邊對等角”)等腰三角形的兩個底角相等?已知:?ABC中,AB=AC.?求證:?B=?C.ACBD
2024-12-07 23:42
【總結】等腰三角形的性質(zhì)定理1、從邊看:等腰三角形的兩腰相等。(定義)2、從角看:等腰三角形的兩底角相等。(性質(zhì)定理1)3、從重要線段看:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。(性質(zhì)定理2)定義:有兩邊相等的三角形是等腰三角形。如何判定一個三角形是等腰三角形?還有其他方法嗎?等腰三角形的兩底角相等,
2025-11-15 13:18
【總結】第十三章軸對稱等腰三角形等腰三角形第2課時等腰三角形的判定2022秋季數(shù)學八年級上冊?R等腰三角形的判定一個三角形有兩個角,則這兩個角所對的邊也(簡寫成“等角對”).自我診斷1.在△ABC中,∠B=∠C,AB=5,則AC的
2025-06-13 13:38
【總結】第十三章軸對稱遵義學練考數(shù)學8上【R】等腰三角形等腰三角形第2課時等腰三角形的判定感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-16 02:09
【總結】等腰三角形的判定P143思考如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警,當時測得∠A=∠B.如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風浪因素)?OBAOAB已知:如圖,在ΔOAB中,∠A=∠B,求證:OA=OB.證明:過O點作OC⊥AB,垂
2025-11-15 17:31
【總結】第十三章遵義學練考數(shù)學8上【R】等腰三角形第2課時等腰三角形的判定等腰三角形感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-16 02:10
【總結】等腰三角形的判定HQEZWJL321制作復習引入兩腰相等;等腰三角形有哪些特征呢?ABC,(簡稱“等邊對等角”);、底邊上的中線和底邊上的高互相重合。(簡稱“三線合一”),對稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?A
2025-10-31 00:36
【總結】ABO如圖,位于在海上A、B兩處的兩艘救生船接到O處的遇險報警,當時測得∠A=∠B。如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風浪因素)?等腰三角形的判定:如果一個三角形中有兩個角相等,那么這兩個角所對的邊也相等.(等角對等邊)
2025-11-22 00:55
【總結】數(shù)學:等腰三角形的性質(zhì)課堂練習(浙教版八年級上)本課重點:1、掌握等腰三角形的性質(zhì);2、會用等腰三角形的性質(zhì)進行說明和計算?;A訓練:1、填空題:(1)等腰三角形的頂角平分線、、互相重合。(2)等腰三角形有一個角是120°,那么其他兩個角的度數(shù)是
2025-11-19 12:24
【總結】第13章全等三角形等腰三角形2022秋季數(shù)學八年級上冊?HS如果一個三角形的兩個角相等,那么這兩個角所對的邊,簡寫成“”.自我診斷1.如圖,在△ABC中,∠B=∠C,AB=5,則AC的長為()A.2
2025-06-13 13:34