【總結】 二倍角的正弦、余弦、正切公式 學習目標 核心素養(yǎng) 、余弦和正切公式.(重點) 、余弦和正切公式化簡、求值和證明.(重點) ,并能熟練應用.(難點、易混點) ,培養(yǎng)學生的數(shù)學建模和...
2025-04-05 06:02
【總結】第三章三角恒等變形,第一頁,編輯于星期六:點三十五分。,§3二倍角的三角函數(shù)(1),第二頁,編輯于星期六:點三十五分。,,自主學習梳理知識,課前基礎梳理,第三頁,編輯于星期六:點三十五分。,,第四頁,...
2025-10-13 18:58
【總結】第三章三角恒等變形,第一頁,編輯于星期六:點三十六分。,§3二倍角的三角函數(shù)(2),第二頁,編輯于星期六:點三十六分。,,自主學習梳理知識,課前基礎梳理,第三頁,編輯于星期六:點三十六分。,,第四頁,...
【總結】第三章三角恒等變換簡單的三角恒等變換1.了解半角公式及其推導過程.(重點)2.能用兩角和與差公式進行簡單的三角求值、化簡和證明.(重點、難點)3.掌握三角恒等變換在研究三角函數(shù)圖象與性質(zhì)中的應用.(重點、難點)1.半角公式2.輔助角公式asinx+bcosx=a
2024-11-19 18:39
【總結】二倍角的正弦、余弦、正切知識回顧:請寫出兩角和的正弦、余弦、正切公式???????sinsincoscos)cos(?????????sincoscossin)sin(?????????tantan1tantan)tan(?????相等時會是什么結果呢和,即角
2025-06-05 22:12
【總結】 3. 二倍角的正弦、余弦、正切公式 考試標準 課標要點 學考要求 高考要求 二倍角的正弦、余弦、正切公式 c c 倍角公式的應用 b b 知識導圖 學法...
2025-04-03 04:02
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導出兩角和與差的正切公式并能應用.(重點)2.能夠熟練地正用、逆用和變形應用兩角和與差的正切公式.(重點、難點)兩角和與差的正切公式做一做(1)已知tanα=1
2024-12-04 18:51
【總結】杭州七中張瑋練習1:不查表,求下列各式的值:練習2:化簡:例1:練習3:例2:練習4:例3求證:思考題:作業(yè):2、求證:小結:1、二倍角的正弦、余弦、正切的公式
2025-10-28 15:31
【總結】一、基本公式:sin2?=cos2?=tan2?=2sin?cos?(S2?)cos2?-sin2?(C2?)2tan?/(1-tan2?)(T2?)利用sin2?+cos2?=1,公式C2?還可以變形為:cos2?=1-2sin2?或cos2?=
2025-10-28 15:32
【總結】二倍角的正弦、余弦正切公式..(重點).(難點)??sin??????cos??????tan????sincoscossin???????coscossinsin???????tantan1tant
2025-07-26 01:41
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
【總結】第一頁,編輯于星期六:點二十七分。,1.4三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象,第二頁,編輯于星期六:點二十七分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點二十七分。,第四頁...
2025-10-13 18:35
【總結】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-11-17 19:44
【總結】簡單的三角恒等變換學習目標:.21coscos22αα??21cossin22αα??21costan21cosααα???22απkπkZ?????????,半角公式1cotansn2siααα??s
2024-11-18 12:17
【總結】二倍角的正弦、余弦和正切公式(基礎)【學習目標】1.能從兩角和的正弦、余弦、正切公式推導出二倍角的正弦、余弦、正切公式,并了解它們之間的內(nèi)在聯(lián)系.2.能熟練運用二倍角公式進行簡單的恒等變換(包括導出積化和差、和差化積、半角公式.但不要求記憶),能靈活地將公式變形并運用.3.通過運用公式進行簡單的恒等變換,進一步提高運用聯(lián)系的觀點、化歸的思想方法處理問題的自覺性,體會換元思
2025-06-16 00:06