【導(dǎo)讀】1,-7,13,-19,25,?2,52,134,338,8116,?27,411,12,45,2,?解析:原數(shù)列的各項(xiàng)可看成數(shù)列{an}:1,-1,1,-1,?對(duì)應(yīng)項(xiàng)相乘的結(jié)果.。1+120,2+121,3+122,4+123,?由數(shù)列的前n項(xiàng)歸納出的通項(xiàng)公式不一定唯一.如數(shù)列5,0,-5,0,5,?1n等,觀察所給數(shù)列與這些特殊數(shù)列的關(guān)系,從而寫。1,3,6,10,15,?,易得an=n(n+1).。組成1為首項(xiàng),3為公差的等差數(shù)列,易得an=(-1)n+1(3n. 例2設(shè)Sn為數(shù)列{an}的前n項(xiàng)的和,且Sn=32,求數(shù)列{an}的通項(xiàng)公式.?!喈?dāng)n≥2時(shí),數(shù)列{an}是以3為公比的等比數(shù)列,且首項(xiàng)a2=3a1=9.常因?yàn)楹雎粤薾≥2的條件而出錯(cuò),即由an=Sn-Sn-1求得an時(shí)的n是從2開始的自然數(shù),否則會(huì)出現(xiàn)當(dāng)n=1時(shí)Sn-1=S0,而與前n項(xiàng)和定義矛盾.可見由an=Sn-Sn-1所確定的an,②-①得an+1=2an+2,證明:由已知an-an-1=3n-1,an-a1=12+22+?