freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

基于加筋土結(jié)構(gòu)的內(nèi)部穩(wěn)定性的抗震設(shè)計(jì)可靠性(英文文獻(xiàn)翻譯)-資料下載頁

2025-06-30 21:58本頁面

【導(dǎo)讀】應(yīng)用有限平衡方程,假設(shè)是失效面是對數(shù)螺旋曲線,對確保抵抗張拉、拔出破壞。內(nèi)部穩(wěn)定性進(jìn)行分析。回填土的性質(zhì)和土工合成材料的加強(qiáng)強(qiáng)度被視為隨機(jī)變量。拔出破壞有關(guān)的所有土工材料層的可靠度減少。抵抗張拉、拉拔破壞模式所需目標(biāo)可靠性指標(biāo)的每個(gè)級別的加強(qiáng)總長度。重要考慮的是最大張力。最大的加固張力取決于加。地震加速度作用。面向擋土墻開放一面的。水平地震加速度很大程度的破壞系統(tǒng)。在這種情況下,最優(yōu)化過程對擋土。這一理論是現(xiàn)在應(yīng)。的影響和應(yīng)用在在圓形、非圓形破壞面上。在所有工程師及領(lǐng)域這種優(yōu)化方。法導(dǎo)致巨大的改善性能。的波動導(dǎo)致預(yù)期結(jié)構(gòu)性能與預(yù)期的不同。分析的安全因素。問題是否充分的說明結(jié)構(gòu)的安全。的,這包括外部施加的載荷,筋強(qiáng)度的不確定性。的最小安全系數(shù)為。了達(dá)到最佳的設(shè)計(jì),設(shè)計(jì)者必須考慮荷載,與基本的確定性最優(yōu)化問題相。Sayed等人應(yīng)用擬靜力分析提出。此外,Basha和Babu發(fā)表第一篇關(guān)。一個(gè)可靠的加筋土設(shè)計(jì)或者,相反地,

  

【正文】 of geosynthetic reinforced soil walls: A reliability based approach. J Geotech Geoenviron Eng ASCE 136(6):797–812 Basha BM, Babu GLS (20xxb) Reliability assessment of internal stability of reinforced soil structures: A pseudodynamic approach. Soil Dyn Earthq Eng 30(5):336–353 Basma AA, Barakat SA, Omar MT (20xx) Reliability based risk index for the design of reinforced earth structures. Geotech Geol Eng 21:225–242. doi::102493 2408001 Bathurst RJ, Cai Z (1995) Pseudostatic seismic analysis of geosynthetic reinforced segmental retaining walls. Geosynth Int 2(5):787–830 Chalermyanont T, Benson C (20xx) Reliabilitybased design for internal stability of mechanically stabilized earth walls. J Geotech Geoenviron Engnrg ASCE 130(2):163–173. doi: (ASCE)10900241(20xx)130:2(163) Duncan J (20xx) Factors of safety and reliability in geotechnical engineering. J Geotech Geoenviron Eng ASCE 126(4): 307–316. doi:(ASCE)10900241(20xx)126:4(307) FHWA (20xx) Mechanically stabilized earth walls and reinforced soil slopes: design and construction guidelines, Publication FHWA NHI0043. Federal Highway Administration and National Highway Institute, Washington, DC Kramer SL (20xx) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River Leshchinsky D, Boedeker RH (1989) Geosynthetic reinforced soil structures. J Geotech Eng 115(10):1459–1478 Leshchinsky D, Kaching S (1994) Pseudostatic seismic stability of slopes. J Geotech Eng 120(9):1514–1532. doi: (ASCE)07339410(1994)120:9(1514) Ling HI, Leshchinsky D (1998) Effects of vertical acceleration on seismic design of geosynthetics reinforced soil structures. Geotechnique 48(3):347–373 Ling HI, Leshchinsky D (20xx) Failure analysis of modularblock reinforced soil walls during earthquakes. J Perform Construct Facilit ASCE 19(2):117–123 Ling HI, Leshchinsky D, Perry EB (1997) Seismic design and performance of geosynthetic reinforced soil structures. Geotechnique 47(5):933–952 Nimbalkar SS, Choudhury D, Mandal JN (20xx) Seismic stability of reinforcedsoil wall by pseudodynamic method. Geosynthetics Int 13(3):111–119. doi: Nouri H, Fakher A, Jones CJFP (20xx) Evaluating the effects of the magnitude and amplification of pseudostatic acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method. Geotex Geomem 26(3):263–278. doi:002 Phoon K, Kulhawy F (1999) Evaluation of geotechnical property variability. Can Geotech J 36:625–639. doi: Saran S, Garg KG, Bhandari RK (1992) Retaining wall with reinforced cohesionless backfill. J Geotech Eng 118(12): 1869–1888. doi:(ASCE)07339410(1992)118:12 (1869) Sawada T, Chen WF, Nomachi SG (1993) Assessment of seismic displacements of slopes. Soil Dyn Earthq Eng 12(3):357–362. doi:(93)90038S Sayed S, Dodagoudar GR, Rajagopal K (20xx) Reliability analysis of reinforced soil walls under static and seismic forces. Geosynth Int 15(4):246–257. doi:246 The MathWorks Inc (20xx) Optimization toolbox user’s guide. MATLAB Programming Zornberg JG, Sitar N, Mitchel JK (1998) Performance of geosynthetic reinforced slopes at failure. J Geotech Geoenviron Eng 124(8):670
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1