【導(dǎo)讀】∴z的虛部為-1.=11+2i=1-2i5,∴選D.由題意得2-2b5=4+b5,[解析]a+bic+di=ac+bdc2+d2+bc-adc2+d2,因為a+bic+di為實數(shù),所以其虛部bc-adc2+d2=0,即bc-ad. [解析]由a+bi為純虛數(shù),可知a=0,b≠0,因此,a=0,b≠0?abcd=ad-bc,則符合條件??????∴zi+z=4+2i.∴z=4+2i1+i=3-i.13.已知集合M={1,2,+i},m∈R,N={-1,3},滿足M∩N≠。14.設(shè)復(fù)數(shù)z=2+i?15.若復(fù)數(shù)z=1-2i,則z·z+z=____________.16.已知z1=1+2i,z2=m+(m-1)i,且兩復(fù)數(shù)的乘積z1z2的實部和虛部為相等的正數(shù),[解析]z=(2+i)m2-6m2(1+i)-2(1-i)=+i.a+2=3,解得??19.已知復(fù)數(shù)z的共軛復(fù)數(shù)為z,且z·z-3iz=101-3i,求z.[解析]設(shè)z=a+bi,∴z=a-bi,