【導(dǎo)讀】解析由等差數(shù)列性質(zhì)得a2+a7+a9=3a6=15,∴a6=5,S11=11a6=C.解析a8=S8-S7=82-72=15.解析a2+a4=2a3=4,∴a3=2,a3+a5=2a4=10,∴a4=5,∴d=3,a1=-4,∴S10=10a1+10×92×d=95.5.等差數(shù)列{an}的前n項(xiàng)和為Sn,且6S5-5S3=5,則a4=________.已知a1=-7,an+1=an+2,求S17.解設(shè){an}的首項(xiàng)為a1,公差為d,∴Sn=n×16+nn-2×(-2)=60.∴S17=17×(-7)+-2×2=153.又∵a2+a7+a12=3a7=24,∴a7=8,∴S13=a1+a132×13=13×8=104.∴{an}是首項(xiàng)為負(fù)數(shù)的遞增數(shù)列,所有的非正項(xiàng)之和是Sn的最小值.∵a6=-1,a7=1,8.在等差數(shù)列{an}中,an<0,a32+a82+2a3·a8=9,那么S10等于().。+a97分別是33項(xiàng)之和,+a99=-132+50=-82.11.已知等差數(shù)列{an}的前三項(xiàng)為a-1,4,2a,記前n項(xiàng)和為Sn.則b3+b7+b11+…12.已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a3·a4=117,若數(shù)列{bn}滿足bn=Snn+c,是否存在非零實(shí)數(shù)c使得{bn}為等差數(shù)列?由知Sn=n+4n-2=2n2-n,法二當(dāng)n≥2時(shí),