【導(dǎo)讀】的象限,也就是符號(hào)問題,學(xué)會(huì)靈活運(yùn)用.
【總結(jié)】(一)沈陽二中數(shù)學(xué)組掌握用向量證明問題的方法.掌握兩角和與差的余弦公式.熟練應(yīng)用公式求值和證明及公式正,反兩方面的應(yīng)用.本節(jié)重點(diǎn)是應(yīng)用公式求值和證明.本節(jié)難點(diǎn)是公式的推導(dǎo).學(xué)習(xí)目標(biāo)自學(xué)提綱1、如何用α或β的正弦,余弦來表示α-β或α+β的余弦?2、兩角和與差的余弦公式是怎樣
2024-11-18 12:09
【總結(jié)】學(xué)習(xí)目標(biāo)1、理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦的方法。2、體會(huì)三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握公式的應(yīng)用。學(xué)習(xí)過程1、兩角和的余弦公式:2、兩角差的余弦公式:
2024-11-27 23:36
【總結(jié)】兩角和與差的余弦公式【學(xué)習(xí)目標(biāo)】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運(yùn)用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學(xué)習(xí)重點(diǎn)難點(diǎn)】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo)探究cos(α+β)≠cosα+cosβ
2024-11-20 01:05
【總結(jié)】3.1兩角和與差的三角公式習(xí)題課例1將下列sincosaxbx?化成sin()Ax??的形式(1)3sin3cosxx?;(2)3sincosxx?;(3)sin3cosxx??;(4)sin3cosxx??;(5)sincosxx?;(6)sincosxx?
2024-11-27 23:35
【總結(jié)】第三章一、選擇題1.若tan(π4-α)=3,則cotα等于()A.-2B.-12C.12D.2[答案]A[解析]∵tan(π4-α)=1-tanα1+tanα=3,∴tanα=-12,∴cotα=-2.2.設(shè)tanα、tanβ是方程x2-3x+2
2024-11-28 02:11
【總結(jié)】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2024-12-05 10:15
【總結(jié)】兩角和與差的余弦公式教學(xué)設(shè)計(jì)【教學(xué)三維目標(biāo)】:理解兩角和與差的余弦公式的推導(dǎo)過程,熟記兩角和與差的余弦公式,運(yùn)用兩角和與差的余弦公式,解決相關(guān)數(shù)學(xué)問題;培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)能力;培養(yǎng)學(xué)生逆向思維和發(fā)散思維能力;2過程與方法目標(biāo):通過對(duì)公式的推導(dǎo)提高學(xué)生研究問題、分析問題、解決問題能力
2024-11-19 11:24
【總結(jié)】教學(xué)設(shè)計(jì):一:學(xué)習(xí)目標(biāo):二:復(fù)習(xí)引入:(1)向量的數(shù)量積(定義)__________ba??),,a11yx(?),b22yx(?則(坐標(biāo)表達(dá)式)__________ba??(2)觀察圖(一)單位圓上的點(diǎn)的坐標(biāo)表示p1()p2(
2024-11-28 00:26
【總結(jié)】兩角和與差的余弦一、教學(xué)目標(biāo):經(jīng)歷兩角和與差的余弦公式的推導(dǎo)過程,了解兩角和與差的余弦公式,并初步運(yùn)用兩角和與差的余弦公式,解決較簡單的相關(guān)數(shù)學(xué)問題。2能力目標(biāo):培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)能力;培養(yǎng)學(xué)生的觀察能力,邏輯推理能力和合作學(xué)習(xí)能力。:通過觀察、對(duì)比體會(huì)數(shù)學(xué)的對(duì)稱美和諧
【總結(jié)】兩角和與差的正弦、余弦和正切公式兩角差的余弦公式問題提出,我們學(xué)習(xí)了哪些基本的三角函數(shù)公式?30°,45°,60°等特殊角的三角函數(shù)值可以直接寫出,利用誘導(dǎo)公式還可進(jìn)一步求出150°,210°,315°等角的三角函
2024-11-18 12:17
【總結(jié)】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認(rèn)為cos(α-β)=cosα-cosβ,對(duì)不對(duì)?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
【總結(jié)】第三章三角恒等變換兩角和與差的余弦公式【學(xué)習(xí)目標(biāo)】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運(yùn)用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學(xué)習(xí)重點(diǎn)難點(diǎn)】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo)探究cos(α+β
2024-11-28 16:29
【總結(jié)】高中數(shù)學(xué)必修四《兩角和與差的正切》教學(xué)設(shè)計(jì)一、概述本節(jié)課為1課時(shí),40分鐘。本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書?數(shù)學(xué)(必修四)》(人教B版)第三章《三角恒等變換》中的第三節(jié)《兩角和與差的正切》,是《兩角和與差的正余弦》的延伸,也是三角恒等變換公式的重要組成部分.教材主要通過兩角和的正弦公式及兩角和的余弦公式
2024-11-18 16:43
【總結(jié)】課題:探究兩角和與差的正切教學(xué)設(shè)計(jì)課標(biāo)分析①理解以兩角差的余弦公式導(dǎo)出的兩角和與差的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系;②能運(yùn)用上述公式進(jìn)行簡單的恒等變換,,使學(xué)生進(jìn)一步提高運(yùn)用轉(zhuǎn)化的觀點(diǎn)去處理問題的自覺性,體會(huì)一般與特殊的思想,換元的思想,方程的思想等數(shù)學(xué)思想在三角恒等變換中的應(yīng)用.教材分析本節(jié)課教學(xué)內(nèi)容是高一(下
【總結(jié)】課題:兩角和與差的正弦、余弦班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】;【課前預(yù)習(xí)】1、兩角和的余弦公式:.__________________)cos(????兩角差的余弦公式:.___________
2024-12-05 00:28