【導讀】掌握用向量證明問題的方法.掌握兩角和與差的余弦公式.正,反兩方面的應用.本節(jié)重點是應用公式求值和證明.本節(jié)難點是公式的推導.差余弦有什么關系?看出在解題中應注意的問題是什么?
【總結】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認為cos(α-β)=cosα-cosβ,對不對?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
2024-12-09 03:40
【總結】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-11-17 19:44
【總結】【優(yōu)化指導】2021年高中數(shù)學兩角差的余弦公式課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎中檔稍難公式的簡單運用1、2、4給值求值問題56、8、9、11綜合應用37、10、12131.化簡cos(45°-α)cos(α+
2024-12-08 13:11
【總結】【優(yōu)化指導】2021年高中數(shù)學兩角差的余弦公式學業(yè)達標測試新人教A版必修41.下列式子中,正確的個數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1
2024-12-08 13:12
【總結】§兩角和與差的余弦(課前預習案)班級:___姓名:________編寫:一、新知導學1、公式)(???C:cos(-)???令?=-(??)得)(???C:cos()????特征:①
2024-11-27 23:39
【總結】兩角差的余弦公式教學目的:經(jīng)歷用向量數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結構特征,并會應用。教學重點:兩角差的余弦公式結構及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-08 22:40
【總結】兩角和與差的余弦公式【學習目標】1、理解向量法推導兩角和與差的余弦公式,并能初步運用解決具體問題;2、應用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學習重點難點】向量法推導兩角和與差的余弦公式【學習過程】(一)預習指導探究cos(α+β)≠cosα+cosβ
2024-11-20 01:05
【總結】雙基達標?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設α∈??????0,π2,若sinα=35,則2cos
2024-11-28 01:12
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
2024-12-04 18:51
【總結】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個單位向量的數(shù)量積等于?向量長度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標系中,以原點為中心,單位長度為半徑作單位圓,以原點為頂點,x軸為始邊分別作角任意α,β與單位圓交于
2024-11-17 15:05
【總結】一、選擇題1.cos45°cos15°+sin15°sin45°的值為()A.-32B.32C.22D.-22【解析】cos45°cos15°+sin15°sin45°=cos(45°-15°
【總結】學習目標掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學生初步理解公式的結構及其功能,為建立其它和(差)公式打好基礎.學習過程一、課前準備自學過程:1、cos()????,2、cos()????
【總結】兩角和與差的正弦、余弦、正切公式學習目標:1.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦公式.2.會用兩角和與差的正、余弦公式進行簡單的三角函數(shù)的求值、化簡、計算等.3.熟悉兩角和與差的正、余弦公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.學習重點
2024-12-05 06:46
【總結】課題兩角和與差的正弦、余弦、正切公式(一)教學目標知識與技能理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法過程與方法體會三角恒等變換特點的過程,理解推導過程,掌握其應用情感態(tài)度價值觀聯(lián)想觀察分析靈活運用公式重點兩角和、差正弦和正切公式的推導過程及運用難點兩角和與差正弦
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導出兩角和與差的正切公式并能應用.(重點)2.能夠熟練地正用、逆用和變形應用兩角和與差的正切公式.(重點、難點)兩角和與差的正切公式做一做(1)已知tanα=1