freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

北京市海淀區(qū)20xx屆中考銳角三角函數(shù)專題復習練習含答案-資料下載頁

2024-11-26 22:53本頁面

【導讀】出以下四組數(shù)據(jù):①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,9.在△ABC中,∠C=90°,a,b,c分別是∠A,∠B,∠C的對邊,且有c2+4b2-。12.如圖,在△ABC中,AB=5,BC=13,AD是BC邊上的高,AD=4,則CD=______,電梯從點B到點C上升的高度h是________m.BC是________m.(不考慮其他因素,參考數(shù)據(jù):sin8°≈425,tan8°≈17,sin10°18.如圖,矩形ABCD的對角線AC,BD相交于點O作OE⊥AC交AB于點E,19.當x=2sin45°+tan60°時,先將代數(shù)式xx2-1÷象限內(nèi),且BO=5,sin∠BOA=35.箱高BE=3m,斜面坡角為30°,求木箱端點E距地面AC的高度EF.寬20米,A,B相距62米,∠A=67°,∠B=37°.求CD與AB之間的距離;(參考數(shù)據(jù):sin67°≈1213,cos67°≈513,tan67°≈125,sin37°≈35,cos37°又∵x=2sin45°+tan60°=2×22+3=1+3,∴原式=12+3=2-3.∵BC=3,OC=4,OA=10,∴AC=6,∴AB=62+32=35,

  

【正文】 5 5. 21. 解: (1)證明: ∵ 四邊形 ABCD 是矩形 ,∴ AD∥ BC, AD= BC, ∴∠ DAF= ∠AEB. ∵ AE= BC,∴ AE= AD, 又 ∵∠B = ∠DFA = 90176。 , ∴△ EAB≌△ ADF,∴ AB= DF. (2)在 Rt△ ABE 中 , BE= AE2- AB2= 102- 62= 8. ∵△ EAB≌△ ADF,∴ DF= AB= 6, AF= EB= 8,∴ EF= AE- AF= 10- 8= 2, ∴ tan∠ EDF= EFDF= 26= 13. 22. 解:連接 AE, 圖略. 在 Rt△ ABE 中 , AB= 3, BE= 3, 則 AE= AB2+ BE2= 2 3. ∵ tan∠ EAB= BEAB= 33 ,∴∠ EAB= 30176。. 在 Rt△ AEF 中 ,∠ EAF= ∠EAB + ∠BAC = 30176。 + 30176。 = 60176。 , ∴ EF= AE sin∠ EAF= 2 3 32 = 3(m). 答:木箱端點 E 距地面 AC 的高度 EF 為 3 m. 23. 解: (1)設(shè) CD 與 AB 之間的距離為 x 米 , 則在 Rt△ BCF 和 Rt△ ADE 中 , ∵ CFBF= tan 37176。, DEEA= tan 67176。, ∴ BF= CFtan 37176。 ≈ 43x, AE= DEtan 67176。 ≈ 512x. 又 ∵AB = 62, CD= EF= 20, ∴ 43x+ 512x+ 20≈62 , 解得 x≈24 , 故 CD 與 AB 之間的距離約為 24 米. (2)在 Rt△ BCF 和 Rt△ ADE中 , ∵ BC= CFsin 37176。 ≈ 2435= 40(米 ), AD= DEsin 67176。 ≈ 241213= 26(米 ), ∴ AD+ DC+ CB- AB≈26 + 20+ 40- 62= 24(米 ). 答:他沿折線 A→D→C→B 到達超市比直接橫穿馬路多走約 24 米.
點擊復制文檔內(nèi)容
教學課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1