【導(dǎo)讀】.從不等式的解集出發(fā)求不等式中參數(shù)的值或范圍的問題;例2.已知一元二次不等式2240mxmx?????12,xx是關(guān)于x的方程22210()xkxkkR?????的兩個(gè)實(shí)根,求2212xx?中自變量x的取值范圍是一切實(shí)數(shù),求k的取值范圍.
【總結(jié)】引例:用一根長(zhǎng)為100m的繩子能圍成一個(gè)面積大于600m2的矩形嗎?問題情境:分析:設(shè)矩形一邊的長(zhǎng)為xm(0600即x2-50x+6000是二次的不等式叫做一元二次不等式.問題:如何解一元二次不等式呢?定義:含有一個(gè)未知數(shù),并且未
2024-11-17 23:32
【總結(jié)】3.2一元二次不等式學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入某項(xiàng)體育活動(dòng)中,甲小組有n人(n>5),游戲規(guī)則是每人在規(guī)定時(shí)間內(nèi)從A地跑到B地可得(n-4)分,經(jīng)測(cè)試甲小組至多有5人不能在比賽時(shí)完成這個(gè)任務(wù),甲小組在比賽中得分要多于56分,問
2024-11-17 23:16
【總結(jié)】第一篇:高中數(shù)學(xué)《一元二次不等式》教案蘇教版必修5 第4課時(shí):§一元二次不等式(3) 【三維目標(biāo)】: 一、知識(shí)與技能 ,從中體會(huì)由實(shí)際問題建立數(shù)學(xué)模型的方法;、數(shù)學(xué)思想方法在問題解決中的重要作...
2024-10-28 20:54
【總結(jié)】一元二次不等式及其解法(第2課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系,進(jìn)一步熟悉一元二次不等式的解法...合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境題組一:再現(xiàn)型題組解答下列各題:(1)已知二次函數(shù)f(x)=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0的解是;一
2024-12-09 03:40
【總結(jié)】引例:用一根長(zhǎng)為100m的繩子能圍成一個(gè)面積大于600m2的矩形嗎?問題情境:分析:設(shè)矩形一邊的長(zhǎng)為xm(0600即x2-50x+6000是二次的不等式叫做一元二次不等式.問題:如何解一元二次不等式呢?定義:含有一個(gè)未知數(shù),并且未知數(shù)
2024-11-18 08:48
【總結(jié)】一元二次不等式(1)教學(xué)目標(biāo):1.經(jīng)歷從實(shí)際情境抽象出一元二次不等式模型的過程;2.通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系;3.會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖.教學(xué)重點(diǎn):一元二次不等式的解法.教學(xué)難點(diǎn):一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系.
2024-11-20 01:04
【總結(jié)】一元二次不等式(3)教學(xué)目標(biāo):一、知識(shí)與技能1.進(jìn)一步熟悉求解一元二次不等式的方法、步驟;2.提高分析問題、構(gòu)建函數(shù)模型、解決問題的能力.二、過程與方法1.讓學(xué)生在解決應(yīng)用題的過程中,體會(huì)應(yīng)用題的求解思路,掌握求解應(yīng)用題的方法.2.培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用意識(shí)和分析問題、解決問題的能力以及表達(dá)交流能力.
2024-12-05 10:13
【總結(jié)】3.2一元二次不等式1.一般地,含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為二次的整式不等式,叫做一元二次不等式.2.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次方程f(x)=0的解集,就是使二次函數(shù)值等于0時(shí)自變量x的取值的集合.3.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次不等式f(x
【總結(jié)】一元二次不等式的解法第二課時(shí)一、復(fù)習(xí)(1)化成標(biāo)準(zhǔn)形式ax2+bx+c0(a0)ax2+bx+c0)(2)判定△與0的關(guān)系,并求出方程ax2+bx+c=0的實(shí)根;
2024-11-18 12:16
【總結(jié)】二元一次不等式表示的平面區(qū)域班級(jí)學(xué)號(hào)姓名一一、、學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.了解二元一次不等式的幾何意義.2.掌握做出二元一次不等式所表示的平面區(qū)域的方法.二二、、重點(diǎn)難點(diǎn):理解如何用二元一次不等式表示平面區(qū)域,能正確畫出表示二元一次不等式的平面
2024-11-19 19:08
【總結(jié)】課題:§一元二次不等式及其解法第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程和通過函數(shù)圖象
2024-12-02 10:14
【總結(jié)】§一元二次不等式及其解法(二)自主學(xué)習(xí)知識(shí)梳理1.解分式不等式的同解變形法則(1)f?x?g?x?0?________________;(2)f?x?g?x?≤0?________________;(3)f?x?g?x?≥a?f?x?-ag?x?g?x?≥0.2.處理不等式恒成立問題的
2024-11-19 23:20
【總結(jié)】一元二次不等式及其解法(第1課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系..合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:觀察不等式x2-4x0,它們有什么共同特征?怎樣給這樣的不等式命名?它的一般形式是什么?問題2:請(qǐng)嘗試求解不等式x2-4x0.
【總結(jié)】二元一次不等式組表示的平面區(qū)域班級(jí)學(xué)號(hào)姓名一一、、學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.了解二元一次不等式組的幾何意義.2.掌握做出二元一次不等式組所表示的平面區(qū)域的方法.二、重點(diǎn)難點(diǎn):理解如何用二元一次不等式組表示平面區(qū)域,能正確畫出表示二元一次不等式組的
2024-11-19 23:12
【總結(jié)】不等式第三章§2一元二次不等式第三章第1課時(shí)一元二次不等式的解法課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)城市人口的急劇增加使車輛日益增多,需要通過修建立交橋和高架道路形成多層立體的布局,以提高車速和通過能力.城市環(huán)線和高
2024-11-17 03:39