【導(dǎo)讀】怎樣判斷一個(gè)復(fù)數(shù)是實(shí)數(shù)?實(shí)數(shù)集R中正整數(shù)指數(shù)的運(yùn)算律,你能發(fā)現(xiàn)規(guī)律嗎?并求出方程的所有根。
【總結(jié)】復(fù)數(shù)代數(shù)形式的四則運(yùn)算,其中a叫做復(fù)數(shù)的、b叫做復(fù)數(shù)的.全體復(fù)數(shù)集記為.虛數(shù)單位i的規(guī)定①i2=-1;②i可以與實(shí)數(shù)一起進(jìn)行四則運(yùn)算,并且加、乘法運(yùn)算律不變.2.我
2025-08-05 04:44
【總結(jié)】2021年1月6日星期W蘇教高中數(shù)學(xué)選修2-2教學(xué)目標(biāo):(1)理解復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則;(2)能運(yùn)用運(yùn)算律進(jìn)行復(fù)數(shù)的四則運(yùn)算;練習(xí):(1+i)2=___;(1-i)2=___;____;11____;11??????iiii.______)
2024-11-30 11:22
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第5章2復(fù)數(shù)的四則運(yùn)算課時(shí)作業(yè)北師大版選修2-2一、選擇題1.(2021·新課標(biāo)Ⅰ,1)設(shè)復(fù)數(shù)z滿足1+z1-z=i,則|z|=()A.1B.2C.3D.2[答案]A[解析]由1+z1-z=i得,
2024-12-05 06:26
【總結(jié)】復(fù)數(shù)的運(yùn)算(二)【教學(xué)目標(biāo)】掌握復(fù)數(shù)的除法運(yùn)算,深刻理解它是乘法運(yùn)算的逆運(yùn)算;理解并掌握復(fù)數(shù)的除法運(yùn)算實(shí)質(zhì)是分母實(shí)數(shù)化類問題;體會(huì)到知識(shí)是生產(chǎn)實(shí)踐的需要從而積極主動(dòng)地建構(gòu)知識(shí)體系.【教學(xué)重點(diǎn)】復(fù)數(shù)除法運(yùn)算規(guī)則【教學(xué)難點(diǎn)】分母實(shí)數(shù)化一、課前預(yù)習(xí):(教材95頁(yè))1.已知),(Rbabiaz???,則?z1
2024-11-19 10:27
【總結(jié)】復(fù)數(shù)的四則運(yùn)算⑵一、復(fù)習(xí)鞏固::(1)運(yùn)算法則:設(shè)復(fù)數(shù)z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.(2)復(fù)數(shù)的加法滿足交換律、結(jié)合律,即對(duì)任何z1,z2,z3∈C,有:z1+z2=z2+z1,(z1+z2)+z3=z1+(z
2024-11-19 13:09
2024-11-17 11:00
【總結(jié)】§復(fù)數(shù)的四則運(yùn)算學(xué)習(xí)目標(biāo)思維脈絡(luò)1.掌握復(fù)數(shù)代數(shù)形式的加減法運(yùn)算法則,并能運(yùn)用復(fù)數(shù)加減法法則進(jìn)行熟練計(jì)算.2.掌握復(fù)數(shù)的乘、除法法則,并能運(yùn)用復(fù)數(shù)的乘、除法法則進(jìn)行計(jì)算.3.理解復(fù)數(shù)的共軛復(fù)數(shù)的定義,并能說出一個(gè)復(fù)數(shù)與其共軛復(fù)數(shù)的內(nèi)在聯(lián)系.4.能熟練利用z·z=|z
2024-11-18 00:49
【總結(jié)】復(fù)數(shù)的概念教學(xué)目標(biāo):1.理解復(fù)數(shù)的有關(guān)概念以及符號(hào)表示;2.掌握復(fù)數(shù)的代數(shù)形式和幾何表示法,理解復(fù)平面、實(shí)軸、虛軸等概念的意義掌握復(fù)數(shù)集C與復(fù)平面內(nèi)所有點(diǎn)成一一對(duì)應(yīng);3.理解共軛復(fù)數(shù)的概念,了解共軛復(fù)數(shù)的幾個(gè)簡(jiǎn)單性質(zhì).教學(xué)重點(diǎn):復(fù)數(shù)的有關(guān)概念,復(fù)數(shù)的表示和共軛復(fù)數(shù)的概念;教學(xué)難點(diǎn):復(fù)數(shù)概念的理解,復(fù)數(shù)與復(fù)平面上點(diǎn)一一
2024-11-19 22:43
【總結(jié)】復(fù)數(shù)代數(shù)形式的四則運(yùn)算—乘除運(yùn)算一、知識(shí)回顧()()()()abicdiacbdi???????復(fù)數(shù)的加/減運(yùn)算法則:1221()123213()交律合律+=+ΖΖΖΖΖΖ)+ΖΖΖ+Ζ)(+=+(換結(jié)加法運(yùn)算
2025-08-01 17:57
【總結(jié)】復(fù)數(shù)代數(shù)形式的四則運(yùn)算復(fù)數(shù)代數(shù)形式的加減運(yùn)算及其幾何意義我們引入這樣一個(gè)數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:i2??1;形如a+bi(a,b∈R)的數(shù)叫做復(fù)數(shù).全體復(fù)數(shù)所形成的集合叫做復(fù)數(shù)集,一般用字母C表示.一、知識(shí)回顧實(shí)部:虛部z=a+bi
2025-07-23 17:04
【總結(jié)】復(fù)數(shù)的四則運(yùn)算⑴一、復(fù)習(xí)回顧:i的引入;:),(RbRabiaz????復(fù)數(shù)的代數(shù)形式:復(fù)數(shù)的實(shí)部,虛部.復(fù)數(shù)相等實(shí)數(shù):虛數(shù):純虛數(shù):dicbia?????????dbcaab??;0Rab????;0Rab?????
【總結(jié)】第4課時(shí)導(dǎo)數(shù)的四則運(yùn)算..你能利用導(dǎo)數(shù)的定義推導(dǎo)f(x)·g(x)的導(dǎo)數(shù)嗎?若能,請(qǐng)寫出推導(dǎo)過程.問題1:基本初等函數(shù)的導(dǎo)數(shù)公式表:①若f(x)=c,則f'(x)=;②若f(x)=xα(α∈Q),則f'(x)=;③若f(
2024-11-19 23:14
【總結(jié)】:,復(fù)數(shù)乘法法則如下我們規(guī)定????221bdiadibciacdicbia,dicz,biaz??????????們的積那么它是任意兩個(gè)復(fù)數(shù)設(shè)????.ibcadbdac????.,1i,,,2虛部分別合并即可并且把實(shí)部與換成只要在所得的結(jié)果中把類似于兩個(gè)多項(xiàng)式相乘兩個(gè)復(fù)數(shù)相乘可以看出?.定的復(fù)數(shù)兩個(gè)
2025-08-16 01:58
【總結(jié)】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案復(fù)數(shù)除運(yùn)算【學(xué)習(xí)目標(biāo)】1.掌握復(fù)數(shù)代數(shù)形式的乘、除運(yùn)算;2.復(fù)數(shù)的除法運(yùn)算.【自主學(xué)習(xí)】(認(rèn)真自學(xué)課本P109—111)任務(wù)1:閱讀教材,理解下列問題:1.復(fù)數(shù)的乘法設(shè)z1=a+bi,z2=c+di是任意兩個(gè)復(fù)數(shù),那么它們的積(a+b
【總結(jié)】2020/12/24復(fù)數(shù)的乘法2020/12/24一、復(fù)數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個(gè)復(fù)數(shù)的積仍是一個(gè)復(fù)數(shù).對(duì)于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1
2024-11-17 15:11