【總結】§復數(shù)的四則運算學習目標思維脈絡1.掌握復數(shù)代數(shù)形式的加減法運算法則,并能運用復數(shù)加減法法則進行熟練計算.2.掌握復數(shù)的乘、除法法則,并能運用復數(shù)的乘、除法法則進行計算.3.理解復數(shù)的共軛復數(shù)的定義,并能說出一個復數(shù)與其共軛復數(shù)的內在聯(lián)系.4.能熟練利用z·z=|z
2025-11-09 00:49
【總結】復數(shù)的概念教學目標:1.理解復數(shù)的有關概念以及符號表示;2.掌握復數(shù)的代數(shù)形式和幾何表示法,理解復平面、實軸、虛軸等概念的意義掌握復數(shù)集C與復平面內所有點成一一對應;3.理解共軛復數(shù)的概念,了解共軛復數(shù)的幾個簡單性質.教學重點:復數(shù)的有關概念,復數(shù)的表示和共軛復數(shù)的概念;教學難點:復數(shù)概念的理解,復數(shù)與復平面上點一一
2025-11-10 22:43
【總結】復數(shù)代數(shù)形式的四則運算—乘除運算一、知識回顧()()()()abicdiacbdi???????復數(shù)的加/減運算法則:1221()123213()交律合律+=+ΖΖΖΖΖΖ)+ΖΖΖ+Ζ)(+=+(換結加法運算
2025-08-01 17:57
【總結】復數(shù)代數(shù)形式的四則運算復數(shù)代數(shù)形式的加減運算及其幾何意義我們引入這樣一個數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:i2??1;形如a+bi(a,b∈R)的數(shù)叫做復數(shù).全體復數(shù)所形成的集合叫做復數(shù)集,一般用字母C表示.一、知識回顧實部:虛部z=a+bi
2025-07-23 17:04
【總結】復數(shù)的四則運算⑴一、復習回顧:i的引入;:),(RbRabiaz????復數(shù)的代數(shù)形式:復數(shù)的實部,虛部.復數(shù)相等實數(shù):虛數(shù):純虛數(shù):dicbia?????????dbcaab??;0Rab????;0Rab?????
2025-11-10 13:09
【總結】第4課時導數(shù)的四則運算..你能利用導數(shù)的定義推導f(x)·g(x)的導數(shù)嗎?若能,請寫出推導過程.問題1:基本初等函數(shù)的導數(shù)公式表:①若f(x)=c,則f'(x)=;②若f(x)=xα(α∈Q),則f'(x)=;③若f(
2025-11-10 23:14
【總結】:,復數(shù)乘法法則如下我們規(guī)定????221bdiadibciacdicbia,dicz,biaz??????????們的積那么它是任意兩個復數(shù)設????.ibcadbdac????.,1i,,,2虛部分別合并即可并且把實部與換成只要在所得的結果中把類似于兩個多項式相乘兩個復數(shù)相乘可以看出?.定的復數(shù)兩個
2025-08-16 01:58
【總結】湖南省邵陽市隆回二中選修2-2學案復數(shù)除運算【學習目標】1.掌握復數(shù)代數(shù)形式的乘、除運算;2.復數(shù)的除法運算.【自主學習】(認真自學課本P109—111)任務1:閱讀教材,理解下列問題:1.復數(shù)的乘法設z1=a+bi,z2=c+di是任意兩個復數(shù),那么它們的積(a+b
2025-11-26 06:26
【總結】2020/12/24復數(shù)的乘法2020/12/24一、復數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復數(shù)的積仍是一個復數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1
2025-11-08 15:11
【總結】2020/12/24復數(shù)的除法2020/12/24復數(shù)除法的法則復數(shù)的除法是乘法的逆運算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復數(shù)x+yi,叫做復數(shù)a+bi除以復數(shù)c+di的商,記作.a+bic+di2020/12/24a+bic+
2025-11-08 12:09
【總結】復數(shù)代數(shù)形式的四則運算導學案學 科:高二數(shù)學課 型:新授課 課 時:2課時編寫時間: 編寫人:劉 剛 審核人:楊 梅 班 級: 姓 名:【導 案】【學習目標】、減、乘、
2025-08-05 05:12
【總結】澄邁中學2017-2018學年度第二學期高二數(shù)學導學案課題:數(shù)學選修2-2編制人:張鵬升班級:姓名:小組:、減、乘、除的運算法則、運算律.(重點)、除法的運算法則.(難點)、減運算的幾何意義.認真閱讀課本107
2025-08-05 02:06
【總結】復數(shù)的概念一、學法建議:1、本節(jié)內容概念較多,在理解的基礎上要牢記實數(shù)、虛數(shù)、純虛數(shù)與復數(shù)的關系,特別要明確:實數(shù)也是復數(shù),要把打復數(shù)與虛數(shù)加以區(qū)別,對于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實數(shù),而不是純虛數(shù),初學復數(shù)時最易在這里出錯。2、復數(shù)z=a+bi(a、是由它實部和虛
2025-11-10 20:23
【總結】第四章§2理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三知識點一知識點二知識點三知識點四已知復數(shù)z1=a+bi,z2=c+di(a,b,c,d∈R).問題1:多項式的加減實質是合并同類項
2025-11-08 19:02
【總結】高二數(shù)學學案編號19班級姓名復數(shù)的乘法一、【學習目標】理解復數(shù)乘法的運算法則,了解乘方的規(guī)則,掌握一些常見結果?!局攸c、難點】乘方的對比學習、常見結果的理解與運用。二、【教學過程】(一)復習回顧
2025-11-29 16:21