【導讀】一般地,設函數(shù)y=f,該區(qū)間上的減函數(shù)。求出函數(shù)的導函數(shù);再根據(jù)解集寫出單調(diào)遞增區(qū)間;求解不等式,求得其解集,設函數(shù)在及其附近有定義,的,是函數(shù)的局部性質(zhì),不是整體的最值;義區(qū)間內(nèi)可能有多個極大值和極小值;極大值與極小值沒有必然關系,右側,那么f是極小值..2例1求f=x-x-2的極值.本節(jié)課主要學習了哪些內(nèi)容?=0左右側導數(shù)的符號.
【總結】一、復習幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2025-11-08 15:21
【總結】幾種常見函數(shù)的導數(shù)求函數(shù)的導數(shù)的方法是:00(1)()();yfxxfx?????求函數(shù)的增量00(2):()();fxxfxyxx???????求函數(shù)的增量與自變量的增量的比值0(3)()lim.xyyfxx
2025-11-08 23:34
【總結】(1)1、實際問題中的應用.在日常生活、生產(chǎn)和科研中,常常會遇到求函數(shù)的最大(小)值的問題.建立目標函數(shù),然后利用導數(shù)的方法求最值是求解這類問題常見的解題思路.在建立目標函數(shù)時,一定要注意確定函數(shù)的定義域.在實際問題中,有時會遇到函數(shù)在區(qū)間內(nèi)只有一個點使的情形,如果函數(shù)在這個點
2025-11-09 08:56
【總結】導數(shù)在實際生活中的應用教學過程:一、復習引入::一般地,設函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)<f(x0),就說f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點奎屯王新敞新疆:一般地,設函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點
2025-11-29 13:49
【總結】常見函數(shù)的導數(shù)教學過程Ⅰ.課題導入[師]我們上一節(jié)課學習了導數(shù)的概念,導數(shù)的幾何意義.我們是用極限來定義函數(shù)的導數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導數(shù).以后可以把它們當作直接的結論來用.Ⅱ.講授新課[師]請幾位同學上來用導數(shù)的定義求函數(shù)的導數(shù).=C(C是常數(shù)),求y′.[學生板演]解:y=f(x)=C,∴
2025-11-10 19:51
【總結】知識回顧函數(shù)??xfy?在0xx?處的導數(shù)即為函數(shù)??xfy?在0xx?處的瞬時變化率,其幾何意義是曲線??xfy?在點??),(00xfx處切線的斜率。對于函數(shù)??xfy?,如果在某區(qū)間上??0'?xf,那么??xf為該區(qū)間上的增函數(shù);對于函數(shù)
2025-11-09 08:47
【總結】常見函數(shù)的導數(shù)(2)一、復習公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導數(shù)(2)().xxee??(1)()ln(0,1)
2025-11-08 23:31
【總結】?函數(shù)的和、差、積、商的導數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在實際生活中的應用導學案(無答案)蘇教版選修1-1一:學習目標1.學會把實際問題轉化為數(shù)學問題;2.最優(yōu)化問題的求解(利用導數(shù)求最值)。二:課前預習1.回憶求函數(shù)最值的步驟。60cm的鐵絲圍成矩形,長、寬各為多少時矩形的面積最大?
2025-11-11 00:30
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學常見函數(shù)的導數(shù)(1)導學案(無答案)蘇教版選修1-1一、學習目標1.能由導數(shù)的定義三個步驟推導如ykxb??、yc?、yx?、2yx?、1yx?等最簡單函數(shù)的導數(shù)公式。2.熟記冪函數(shù)、指數(shù)對數(shù)函數(shù)、正弦余弦函數(shù)的導數(shù)公式。3.初步會利用導數(shù)公式求簡單函數(shù)的導
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學導數(shù)在實際生活中的應用課后知能檢測蘇教版選修1-1一、填空題1.已知某生產(chǎn)廠家的年利潤y(單位:萬元)與年產(chǎn)量x(單位:萬件)的函數(shù)關系式為y=-13x3+81x-234,則使該生產(chǎn)廠家獲取最大年利潤的年產(chǎn)量為________.【解析】y′=-x2+
2025-11-25 18:01
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學常見函數(shù)的導數(shù)課后知能檢測蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】
2025-11-25 20:01
【總結】導數(shù)在研究函數(shù)中的應用單元測試一、選擇題1.下列函數(shù)在()??,∞∞內(nèi)為單調(diào)函數(shù)的是()A.2yxx??B.yx?C.xye??D.sinyx?答案:C2.函數(shù)lnyxx?在區(qū)間(01),上是()A.單調(diào)增函數(shù)B.單調(diào)減函數(shù)C.在10e
2025-11-23 10:14
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(最大值與最小值)導學案(無答案)蘇教版選修1-1【學習目標】1、使學生掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲担?、使學生掌握用導數(shù)求函數(shù)的最大值與最小值的方法【課前預習】