【導讀】想一想,如何畫y=sin(x+)的圖像?[]上是減函數(shù);在????2最小正周期為?kk函數(shù)的單調(diào)遞增區(qū)間[]
【總結】第一篇:2014年高中數(shù)學(二)新人教A版必修5 教學過程 推進新課 :三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍 形式一 a2=b2+c2-2bcco...
2024-11-05 06:09
【總結】§正弦定理和余弦定理(3)教學目標:1、知識與技能:進一步熟悉正、余弦定理內(nèi)容,能夠熟練應用正、余弦定理進行邊角關系的相互轉(zhuǎn)化,進而判斷三角形的形狀或求值.2、過程與方法:讓學生從正、余弦定理的變形出發(fā),得到邊角互化的關系式,引導學生利用這個關系實現(xiàn)三角關系中的邊或角的統(tǒng)一,再利用已學的三角變換或代數(shù)變換解決問題.3、情感與價值:
2024-11-19 16:13
【總結】余弦定理(教學設計)教學目標1.知識與技能:掌握余弦定理的兩種表示形式及證明余弦定理的向量方法,并會運用余弦定理解決兩類基本的解三角形問題。:利用向量的數(shù)量積推出余弦定理及其推論,并通過實踐演算掌握運用余弦定理解決兩類基本的解三角形問題,3.情態(tài)與價值:培養(yǎng)學生在方程思想指導下處理解三角形問題的運算能力;通過三角函數(shù)、余弦定理
2024-11-18 15:56
【總結】第四課時余弦定理(二)一、學習目標:、余弦定理在解決各類三角形中的應用。、余弦定理應用范圍的認識,處理問題時能選擇較為簡捷的方法。3,。通過訓練培養(yǎng)學生的分類討論,數(shù)形結合,優(yōu)化選擇等思想。二、學習重難點:重點:正、余弦定理的綜合運用.難點:、余弦定理與三角形性質(zhì)的結合;、余弦定理的聯(lián)系.三、自主預習:四、能力技能交流:活動一、靈活應用
2025-06-07 23:27
【總結】中學數(shù)理化本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1正弦定理和余弦定理綜合復習中學數(shù)理化本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理21.正弦定理:RCcBbAa2sinsinsin???一、復習:中學數(shù)理化本資料由書利華教育網(wǎng)
2024-11-17 12:10
【總結】第一頁,編輯于星期六:點二十九分。,第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理,第二頁,編輯于星期六:點二十九分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點二十九分。,...
2024-10-22 18:39
【總結】知識回顧1.正弦定理2.面積公式3.余弦定理4.判斷三角形的形狀典例精析。的形狀是,則且,中,已知:在 例_______ABCCcosBcosBsinabABC????3231的值。的大小及求,,且的對邊,已知,,分別是,,中,:在 例cBsinbAb
2025-03-12 14:29
【總結】高中數(shù)學必修5在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對邊呢?已知三邊,又怎么求出它的三個角呢?導入:余弦定理是什么?怎樣證明?集體探究學習活動一:RTX討論一:在正弦定理的向量證法中,我們是如何將一個向量數(shù)
2025-01-19 09:02
【總結】第2課時余弦定理...如圖,某隧道施工隊為了開鑿一條山地隧道,需要測算隧道通過這座山的長度.工程技術人員先在地面上選一適當?shù)奈恢肁,量出A到山腳B、C的距離,其中AB=3km,AC=1km,再利用經(jīng)緯儀測出A對山腳BC(即線段BC)的張角∠BAC=150°,你能通過計算求
2024-11-18 08:09
【總結】高一數(shù)學必修5導學案第五課時:正弦定理、余弦定理的應用(1)一、學習目標(1)綜合運用正弦定理、余弦定理等知識和方法解決與測量學、航海問題等有關的實際問題;(2)體會數(shù)學建摸的基本思想,掌握求解實際問題的一般步驟;(3)能夠從閱讀理解、信息遷移、數(shù)學化方法、創(chuàng)造性思維等方面,多角度培養(yǎng)學生分析問題和解決問題的能力.二、學習重點,難點重點:(1)綜合運用正弦定理、余
【總結】12直角三角形中的邊角關系:CBAabc1、角的關系:A+B+C=180°A+B=C=90°2、邊的關系:a2+b2=c23、邊角關系:sinA=—=cosBsinB=—=cosAacbc復習3CBAabc
2025-05-06 01:08
【總結】余弦定理復習回顧::2.正弦定理的作用:解三角形:(1)已知兩邊及其中一邊所對的角(2)已知兩角及一邊sinsinsinabcABC??探究:問題:在△ABC中,已知a、b,和角C,求c。(即用a、b、C表示c)
2025-07-18 09:05
【總結】高一數(shù)學導學案必修5第六課時正弦定理、余弦定理的應用(2)一、學習目標(1)能熟練應用正弦定理、余弦定理解決三角形等一些幾何中的問題和物理問題;(2)能把一些簡單的實際問題轉(zhuǎn)化為數(shù)學問題,并能應用正弦、余弦定理及相關的三角公式解決這些問題;(3)通過復習、小結,使學生牢固掌握兩個定理,應用自如.二、學習重點,難點能熟練應用正弦定理、余弦定理及相關公式解決三
2025-06-07 23:18
【總結】第一篇: 教學設計示例(第一課時) 一、教學目標 1.掌握正弦定理及其向量法推導過程; 2.掌握用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題. 二、教學重點正弦定理及其推導過程,正弦...
2024-10-06 04:13
【總結】正弦定理作業(yè)1、在ABC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在ABC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2024-11-30 14:39