【導(dǎo)讀】如果f的值比x0附近所有各點(diǎn)的函。作y極小值=f,x0是極小值點(diǎn)。極大值與極小值統(tǒng)。的值,極值指的是函數(shù)值。如果函數(shù)f在x0處取得極值,反之不一定成立!?。〉脤?duì)任意的x∈I,總有f≤f,最值是相對(duì)函數(shù)定義域整體而言的.利用函數(shù)的導(dǎo)數(shù);如:求y=(x-2)2+3在區(qū)間[1,3]上的最值.
【總結(jié)】高考中的最值(范圍)問(wèn)題問(wèn)題:設(shè)a1、d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前項(xiàng)和為Sn,滿足S5S6+15=0,則d的取值范圍是______.關(guān)系式方程式不等式函數(shù)式思路決定出路x、y實(shí)數(shù),若4x2+y2+xy=1,則2x+y的最大值是.為單位向
2025-10-02 04:58
【總結(jié)】圓錐曲線中的最值問(wèn)題復(fù)習(xí)1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點(diǎn)M(1,3),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓上的任意一點(diǎn),求:①∣AM│+∣AF2│
2025-08-16 02:08
2025-08-04 15:01
【總結(jié)】???xyo(1)配方。(2)畫(huà)圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內(nèi)的最高點(diǎn)和最低點(diǎn))122(a0)xxxyaxbxc??????求給定范圍內(nèi),二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2025-11-12 23:43
【總結(jié)】2020/12/131熱烈歡迎領(lǐng)導(dǎo)和專家蒞臨指導(dǎo)2020/12/132圓錐曲線中的最值問(wèn)題?復(fù)習(xí)目標(biāo):?1.能根據(jù)變化中的幾何量的關(guān)系,建立目標(biāo)函數(shù),然后利用求函數(shù)最值的方法(如利用一次或二次函數(shù)的單調(diào)性,三角函數(shù)的值域,基本不等式,判別式等)求出最值.
2025-10-28 23:19
【總結(jié)】中考數(shù)學(xué)幾何最值問(wèn)題解法在平面幾何的動(dòng)態(tài)問(wèn)題中,當(dāng)某幾何元素在給定條件變動(dòng)時(shí),求某幾何量(如線段的長(zhǎng)度、圖形的周長(zhǎng)或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問(wèn)題,稱為最值問(wèn)題。解決平面幾何最值問(wèn)題的常用的方法有:(1)應(yīng)用兩點(diǎn)間線段最短的公理(含應(yīng)用三角形的三邊關(guān)系)求最值;(2)應(yīng)用垂線段最短的性質(zhì)求最值;(3)應(yīng)用軸對(duì)稱的性質(zhì)求最值;(4)應(yīng)用二次函數(shù)求最值;(5)應(yīng)用其它知
2025-04-04 03:00
【總結(jié)】求圓錐曲線的最值常用哪些方法?圓錐曲線中的最值問(wèn)題(一)呢?拋物線又如何進(jìn)行換元若將橢圓換成雙曲線、.1如何求其范圍呢?換成若將???xyyx想一想OyxOyxpxy22?12222??byax換元法判別式法Q(3,4)P利用幾何意義
2024-11-30 12:26
【總結(jié)】初中幾何最值問(wèn)題例題精講一、三點(diǎn)共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
2025-03-24 12:33
2025-08-16 00:56
【總結(jié)】幾何最值問(wèn)題(講義)l解決幾何最值問(wèn)題的通常思路_______________________,_______________________,__________________是解決幾何最值問(wèn)題的理論依據(jù),___________________________是解決最值問(wèn)題的關(guān)鍵.通過(guò)轉(zhuǎn)化減少變量,向三個(gè)定理靠攏進(jìn)而解決問(wèn)題;直接調(diào)用基本模型也是解決幾何最值問(wèn)題的高效手段.
2025-03-24 12:12
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件60《對(duì)稱問(wèn)題》一、基礎(chǔ)知識(shí)1、點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)(x,y)關(guān)于點(diǎn)(a,b)的對(duì)稱點(diǎn)的坐標(biāo)為(2a-x,2b-y).點(diǎn)關(guān)于點(diǎn)的對(duì)稱的對(duì)稱中心恰恰是這兩點(diǎn)為端點(diǎn)的線段的中點(diǎn),因此中心對(duì)稱的問(wèn)題是線段中點(diǎn)坐標(biāo)公式的應(yīng)用問(wèn)題。2、點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)由軸對(duì)
2025-11-02 02:53
【總結(jié)】專題 最值問(wèn)題【考點(diǎn)聚焦】考點(diǎn)1:向量的概念、向量的加法和減法、向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積.考點(diǎn)2:解斜三角形.考點(diǎn)3:線段的定比分點(diǎn)、平移.考點(diǎn)4:向量在平面解析幾何、三角、復(fù)數(shù)中的運(yùn)用.考點(diǎn)5:向量在物理學(xué)中的運(yùn)用.【自我檢測(cè)】1、求函數(shù)最值的方法:配方法,單調(diào)性法,均值不等式法,導(dǎo)數(shù)法,判別式法,三角函數(shù)有界性,圖象法, 2、求幾類重要函數(shù)
2025-08-04 10:11
【總結(jié)】軌跡問(wèn)題課時(shí)考點(diǎn)13高三數(shù)學(xué)備課組考試內(nèi)容:在理解曲線與方程意義的基礎(chǔ)上,能較好地掌握求軌跡的幾種基本方法.高考熱點(diǎn):、定義法、轉(zhuǎn)移法求曲線的軌跡方程.,等價(jià)轉(zhuǎn)化的思想能起到事半功倍的作用.熱點(diǎn)題型1:直接法求軌跡方程新題型分類例析熱點(diǎn)題型2:定義法和轉(zhuǎn)移法求軌跡方程
2025-10-31 08:45
【總結(jié)】解析幾何中的最值問(wèn)題華東師范大學(xué)松江實(shí)驗(yàn)高級(jí)中學(xué)王麗萍復(fù)習(xí)?||),,(),,(12211AByxByxA則點(diǎn)、點(diǎn)與點(diǎn)的距離:已知221221)()(yyxx???2211||bacbyax???????dlAbacbyaxlyxA的距離線點(diǎn)與直,則不能同時(shí)為、直線知
2025-07-21 17:20
【總結(jié)】......橢圓中的最值問(wèn)題與定點(diǎn)、定值問(wèn)題解決與橢圓有關(guān)的最值問(wèn)題的常用方法(1)利用定義轉(zhuǎn)化為幾何問(wèn)題處理;(2)利用數(shù)形結(jié)合,挖掘數(shù)學(xué)表達(dá)式的幾何特征進(jìn)而求解;(3)利用函數(shù)最值得探求方法,將其轉(zhuǎn)化為區(qū)間上的二次函數(shù)
2025-03-25 04:50