【總結(jié)】一、問題引入1999年9月,馬云先生帶著一個(gè)18人的團(tuán)隊(duì)和50萬人民幣在杭州湖畔花苑開始了阿里巴巴神話。到2020年9月10日,此時(shí)的阿里巴巴總部員工已經(jīng)達(dá)到了17000人,公司市值100億美金。經(jīng)過10年的快速發(fā)展期后,今后一段時(shí)期公司將進(jìn)入穩(wěn)定發(fā)展期,預(yù)計(jì)每年公司市值將比前一年增加百分之十。
2024-11-09 08:11
【總結(jié)】二項(xiàng)式定理泡泡糖問題泡泡糖出售機(jī)媽媽,我要泡泡糖。媽媽,我也要,我要拿和比利一樣顏色的。我包里只有5個(gè)分幣,我能滿足我兩個(gè)兒子的要求嗎?每塞進(jìn)一個(gè)分幣,它會(huì)隨機(jī)吐出一粒泡泡糖。6粒紅色,4粒白色泡泡糖問題用a代表取到紅色的泡泡糖用b代表取到白色的泡泡糖
2024-11-12 19:05
【總結(jié)】當(dāng)時(shí),0??與同向,ba且是的倍;||b||a?當(dāng)時(shí),0??與反向,ba且是的倍;||b||a||?當(dāng)時(shí),0??0b?,且。||0
2024-11-09 03:31
【總結(jié)】平面向量基本定理一、問題情境(1)如何求此時(shí)豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個(gè)向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點(diǎn)OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12
【總結(jié)】O?aAP在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線的射影垂直,那么,它就和這條斜線垂直。三垂線定理在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線垂直,那么,它也和這條斜線的射影垂直。三垂線定理的逆定理O?aAP1、判定下列命題是否正確(1)若a是平面α的斜
2024-11-09 23:33
【總結(jié)】?素材正弦定理,證明一(傳統(tǒng)證法)在任意斜△ABC當(dāng)中:S△ABC=兩邊同除以即得:==AbcBacCabsin21sin21sin21??abc21AasinBbsinC
2025-08-23 15:23
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實(shí)際問題的重要思想方法;?(3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá).?教學(xué)重點(diǎn):平面向量基本定理.
2024-11-12 18:20
【總結(jié)】例1、如圖,,兩地之間隔著一個(gè)水塘,現(xiàn)選擇另一個(gè)點(diǎn),測(cè)得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2024-11-30 12:35
【總結(jié)】課題:正弦定理、余弦定理綜合運(yùn)用(二)?課題:正弦定理、余弦定理綜合運(yùn)用(二)知識(shí)目標(biāo):1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進(jìn)行邊角互換。能力目標(biāo):1、進(jìn)一步熟悉正、余弦定理;2、
2024-11-09 12:40
【總結(jié)】應(yīng)用舉例解決有關(guān)測(cè)量距離的問題1、正弦定理:2、余弦定理:二、應(yīng)用:一、定理內(nèi)容:求三角形中的某些元素解三角形實(shí)例講解分析:在本題中直接給出了數(shù)學(xué)模型(三角形),要求A、B間距離,相當(dāng)于在三角形中求某一邊長(zhǎng)?想一想例1、如下圖,設(shè)A、B兩點(diǎn)在河的兩岸,要測(cè)量?jī)牲c(diǎn)之間的距離
2024-11-10 22:29
【總結(jié)】專題六概率與統(tǒng)計(jì)第1講排列與組合、二項(xiàng)式定理感悟高考明確考向(2010·安徽)(xy-yx)6的展開式中,x3的系數(shù)等于________.解析設(shè)含x3項(xiàng)為第(r+1)項(xiàng),則Tr+1=Cr6
2024-11-12 17:11
【總結(jié)】正弦定理(第二課時(shí))兆麟中學(xué)高一數(shù)學(xué)組CcBbAasinsinsin??正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等.即正弦定理可以解決兩類問題:復(fù)習(xí)回顧①已知兩角和一邊求另外兩邊;②已知兩邊和其中一邊的對(duì)角求其余邊和角.一般地,把三
2025-08-05 08:04
【總結(jié)】正弦定理、余弦定理的應(yīng)用(2)例1、自動(dòng)卸貨汽車的車箱采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂杠BC的長(zhǎng)度(如圖所示)。已知車箱的最大仰角為,油泵頂點(diǎn)B與車箱支點(diǎn)A之間的距離為,AB與水平線之間的夾角為,AC長(zhǎng)為,計(jì)算BC的長(zhǎng)(保留三個(gè)有效數(shù)字)。?60'206?
2025-07-19 20:47
【總結(jié)】排列、組合、二項(xiàng)式定理知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)圖:排列與組合二項(xiàng)式定理基本原理排列組合排列數(shù)公式組合數(shù)公式組合數(shù)的兩個(gè)性質(zhì)二項(xiàng)式定理二項(xiàng)式系數(shù)的性質(zhì)基礎(chǔ)練習(xí)名稱內(nèi)容加法原理乘法原理定義相同點(diǎn)不同點(diǎn)兩個(gè)原理的區(qū)別與聯(lián)系
2024-11-09 08:09
【總結(jié)】正弦定理課件1、邊的關(guān)系:2、角的關(guān)系:3、邊角關(guān)系:1)兩邊之和大于第三邊;兩邊之差小于第三邊2)在直角三角形中:a2+b2=c21)A+B+C=1800CBAsin)sin()2??CBAcos)cos(???2cos2sinCBA??1)大邊對(duì)大角,大角對(duì)大邊,等邊
2024-11-17 05:41