【總結】相似三角形對應角相等,對應邊成比例的三角形叫相似三角形.三角形相似判定:,對應邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。1:兩角對應相等,兩三角形相似。2:兩邊對應成比例且夾角相等,兩三角形相似。
2024-11-09 12:54
【總結】第一篇:北師大版全等三角形教案 (1)全等三角形學案 1.展現(xiàn)生活中的大量圖片或錄像片斷。 片斷1:圖案. 片斷2:一幅漂亮的山水倒影畫,一幅用七巧板拼成的美麗圖案.片斷3:教科書第90頁的3...
2024-10-24 21:53
【總結】§相似三角形的性質學習目標1,在理解相似三角形基本性質的基礎上,掌握相似三角形對應中線、對應高線、對應角平分線的比等于相似比,周長的比等于相似比,面積的比等于相似比的平方。2,通過實踐體會相似三角形的性質,會用性質解決相關的問題。課前熱身1,相似
2024-11-10 21:33
【總結】相似三角形學習目標:?1、掌握相似三角形的定義,并應用它判斷兩個三角形是否相似。?2、掌握相似三角形的性
2024-11-28 01:49
【總結】教材分析學法指導教學方法的選擇與應用課堂教學程序教材的地位和作用教學目標教材的重點、難點教材的地位和作用《相似三角形》是義務教育數學課程標準實驗教材九年級上冊第二十四章第3節(jié)的內容,在這之前學生已經學習了相似多邊形,知道了相似多邊形的本質特征,這為過渡到本節(jié)的學習起著鋪墊作用。本課由一般到特殊引
2024-12-08 10:53
【總結】相似三角形與全等三角形的綜合復習友情提示:請根據課本相關內容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【總結】中考第一輪復習:相似三角形友情提示:請根據課本相關內容,快速解決下列問題,5分鐘后交流展示你的成果。【我反思,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2024-11-30 11:56
【總結】問題1:相似三角形的有關概念(1).三個角對應_____、三條邊對應_______的兩個三角形叫做相似三角形(2).相似三角形的對應角_____,對應邊________.(3).相似比等于____的兩個三角形全等.相等成比例相等成比例1一、復習提問相似三角形的識別問:除定義之外,相似
2024-11-24 13:48
【總結】相似三角形的判定定理:定理1:兩角對應相等,兩三角形相似。定理2:兩邊對應成比例且夾角相等,兩三角形相似。定理3:三邊對應成比例,兩三角形相似?!螦=∠A'∠B=∠B'△ABC∽△A'B'C'??△ABC∽△A'B'C'△ABC∽
2024-11-09 05:43
【總結】作三角形一、知識回顧1、什么叫做三角形?——由不在同一條直線上的三條線段,首尾順次相接所組成的圖形叫做三角形。作法:(1)作射線AX;(2)用圓規(guī)在射線AX截取AB=a;則線段AB就是所要求作的線段。2、已知:線段a,求作:線段AB,使AB=a.求作:∠A
2024-12-08 14:58
【總結】在我們的生活中幾乎隨處可見三角形。它簡單、有趣,也十分有用。三角形可以幫助我們更好的認識周圍的世界,可以幫助我們解決很多實際問題……由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三角形有三條邊、三個內角和三個頂點?!叭切巍笨梢杂梅枴啊鳌北硎?。ABC記為:△ABC1、
2024-11-06 15:52
【總結】北師大版七年級數學(下)5探索三角形全等的條件(3)回顧與思考到目前為止,我們已學過哪些方法判定兩三角形全等?答:邊邊邊(SSS)角邊角(ASA)角角邊(AAS)根據探索三角形全等的條件,至少需要三個條件,除了上述三種情況外,還有哪種情況?答:兩邊一角相等那么有幾種可能的情況呢?
2024-11-09 06:20
【總結】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
【總結】認識三角形(1)
2024-11-27 23:11
【總結】相似三角形x是6、3、2的第四比例項,則x=_____;若2:(a-3)=(a-3):8,則a=________.:2x-5y=0,則x:y=_____;._______;????yxyyyx:AD∥BE∥CF,則=;=;=
2024-11-10 22:11