【總結(jié)】電路萬里學(xué)院陳偉東第4章電路定理與應(yīng)用§(戴維寧定理和諾頓定理)電路萬里學(xué)院陳偉東§等效電源定理(戴維寧定理和諾頓定理)(Thevenin-NortonTheorem)電路萬里學(xué)院陳偉東一、引言工程實(shí)際中,常常碰到只需研究某一支路的電
2024-10-18 23:59
【總結(jié)】勾股定理和勾股定理逆定理經(jīng)典例題題型一:直接考查勾股定理例1在△ABC中,∠C=90°(1)已知AC=6,BC=8,求AB的長(zhǎng);A(2)已知AB=17,AC=15,求BC的長(zhǎng).BC題型二:利用勾股定理測(cè)量長(zhǎng)度1、如果梯子的底端離建筑物9m,那么15m長(zhǎng)的梯子可以到達(dá)建筑物的高度是多少米?DABC2、如圖
2025-03-24 13:00
【總結(jié)】尋找最適合自己的學(xué)習(xí)方法正弦定理和余弦定理高考風(fēng)向 、余弦定理的推導(dǎo);、余弦定理判斷三角形的形狀和解三角形;、余弦定理、面積公式以及三角函數(shù)中恒等變換、誘導(dǎo)公式等知識(shí)點(diǎn)進(jìn)行綜合考查.學(xué)習(xí)要領(lǐng) 、余弦定理的意義和作用;、余弦定理實(shí)現(xiàn)三角形中的邊角轉(zhuǎn)換,和三角函數(shù)性質(zhì)相結(jié)合.1.正弦定理:===2R,其中R是三角
2025-06-28 05:55
【總結(jié)】一、折疊四邊形折疊矩形紙片,先折出折痕對(duì)角線BD,在繞點(diǎn)D折疊,使點(diǎn)A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長(zhǎng)。DAGBCE矩形ABCD如圖折疊,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8,BC=10,求折痕AE的長(zhǎng)。ABCDFE矩形ABCD
2024-11-06 12:54
【總結(jié)】一、折疊四邊形矩形ABCD如圖折疊,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8,BC=10,求折痕AE的長(zhǎng)。ABCDFE折疊矩形紙片,先折出折痕對(duì)角線BD,在繞點(diǎn)D折疊,使點(diǎn)A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長(zhǎng)。DAGBCE;人力資源
2025-08-16 01:02
【總結(jié)】一、折疊四邊形矩形ABCD如圖折疊,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8,BC=10,求折痕AE的長(zhǎng)。ABCDFE折疊矩形紙片,先折出折痕對(duì)角線BD,在繞點(diǎn)D折疊,使點(diǎn)A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長(zhǎng)。DAGBCE長(zhǎng)方形ABC
2024-11-06 13:14
【總結(jié)】正弦定理和余弦定理 正弦定理、余弦定理 在△ABC中,若角A,B,C所對(duì)的邊分別是a,b,c,R為△ABC外接圓半徑,則 定理 正弦定理 余弦定理 內(nèi)容 ===2R a2=b2+c2-...
2024-11-17 04:47
【總結(jié)】勾股定理逆定理鐵山學(xué)校張宏財(cái)?一、教材分析?二、教學(xué)過程?三、說教法、學(xué)法與教學(xué)手段?四、教學(xué)反思一、教材分析?(一)本節(jié)課在教材的地位與作用?本節(jié)課是勾股定理的逆定理。它是在學(xué)過勾股定理的基礎(chǔ)上進(jìn)行的。教科書以古埃及人的作圖為出發(fā)點(diǎn),讓學(xué)生畫出一些兩邊的平方和
2024-11-22 01:51
【總結(jié)】管住你的手:重點(diǎn)知識(shí)記筆記,難點(diǎn)問題細(xì)心演管住你的口:老師提問要回答,小組交流要積極如圖,河南區(qū)一個(gè)工廠,在公路西側(cè),到公路的距離與到河岸的距離相等,并且與河上公路橋較近橋頭的距離為300米。在圖上標(biāo)出工廠的位置,并說明理由。北比例尺1:20200七嘴八舌出主意
2024-11-24 15:46
【總結(jié)】高考風(fēng)向 、余弦定理的推導(dǎo);、余弦定理判斷三角形的形狀和解三角形;、余弦定理、面積公式以及三角函數(shù)中恒等變換、誘導(dǎo)公式等知識(shí)點(diǎn)進(jìn)行綜合考查.學(xué)習(xí)要領(lǐng) 、余弦定理的意義和作用;、余弦定理實(shí)現(xiàn)三角形中的邊角轉(zhuǎn)換,和三角函數(shù)性質(zhì)相結(jié)合.基礎(chǔ)知識(shí)梳理1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(
2025-06-28 04:30
【總結(jié)】正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??si
2024-11-17 06:14
【總結(jié)】第六章動(dòng)量河北師大附中李喜昌專題三:動(dòng)量定理與動(dòng)能定理的區(qū)別和聯(lián)系明確動(dòng)量定理揭示的是動(dòng)量變化和沖量的因果關(guān)系,即合力對(duì)物體的沖量結(jié)果是引起物體動(dòng)量的變化,一般涉及時(shí)間時(shí)用;動(dòng)能定理揭示的是動(dòng)能的變化和功的因果關(guān)系,即合力對(duì)物體做的功結(jié)果是引起物體動(dòng)能的變化,一般涉及位移或路程時(shí)用。
2025-01-13 10:01
【總結(jié)】勾股定理的逆定理第十七章勾股定理第1課時(shí)一、情境引入?據(jù)說,幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個(gè)結(jié),然后,用釘子將第1個(gè)與第13個(gè)結(jié)釘在一起,拉緊繩子,再在第4個(gè)和第8個(gè)結(jié)處各釘上一個(gè)釘子,如圖。這樣圍成的三角形中,最長(zhǎng)邊所對(duì)的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【總結(jié)】勾股定理的逆定理人教版數(shù)學(xué)八年級(jí)下冊(cè).重點(diǎn)、互逆定理難點(diǎn)3.能靈活運(yùn)用勾股定理的逆定理解決實(shí)際問題.重點(diǎn)學(xué)習(xí)目標(biāo)(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結(jié)】動(dòng)能和動(dòng)能定理一、動(dòng)能表達(dá)式設(shè)物體的質(zhì)量為m,在與運(yùn)動(dòng)方向相同的恒定外力F的作用下發(fā)生一段位移,速度由v1增加到v2,如圖所示。試用牛頓運(yùn)動(dòng)定律和運(yùn)動(dòng)學(xué)公式,推導(dǎo)出力F對(duì)物體做功的表達(dá)式。l根據(jù)牛頓第二定律alvv22122??maF?avvl22122
2025-07-18 13:23