freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正余弦定理三角形形狀判斷-資料下載頁

2025-08-05 08:04本頁面
  

【正文】 cosC-sinBsinC代入上式得cosBcosC+sinBsinC=1, ∴ cos(B-C)=1又0<B,C<π,∴-π<B-C<π∴ B-C=0∴ B=C故此三角形是等腰三角形 評(píng)注:學(xué)習(xí)正、余弦定理,不要忘記前面學(xué)過的相關(guān)知識(shí),如本題中,利用“降冪擴(kuò)角公式”把半角化成“單角”的過程起到了關(guān)鍵作用. 五、不要輕易下結(jié)論例6 在 中,已知 試判斷△ABC的形狀.證明: ,即 直角三角形且又綜上,△ABC為等腰直角三角形.評(píng)注:許多結(jié)論中有時(shí)不見得只有一層答案,所以在得出初步結(jié)論來之后,一定要進(jìn)一步思考一番,看已知條件是否全部用到了,看結(jié)論是否想全了.如本題中常常有許多同學(xué)在得出“直角三角形且 ”之后便不再往下寫,從而造成失誤.除此而外,還要注意“等腰直角三角形”與“等腰三角形或直角三角形”的區(qū)別。
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1