【總結】......平面向量基本定理及坐標表示1.平面向量基本定理如果e1、e2是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量a,存在唯一一對實數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內所有
2025-06-30 20:18
【總結】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內兩個向量、,平面內任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2025-11-03 17:12
【總結】當時,0??與同向,ba且是的倍;||b||a?當時,0??與反向,ba且是的倍;||b||a||?當時,0??0b?,且。||0
2025-10-31 03:31
【總結】(2)共線向量的一個充要條件:aa????0時,與同向;?a?a=0時,?00??a(1)實數(shù)與向量的積:a?定理:向量與非零向量共線的充要條
2025-07-25 17:39
【總結】學大教育個性化教學教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學輔導教案學科:數(shù)學任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【總結】沈陽市第三十五中學生本課堂導學案課題:平面向量基本定理科目:數(shù)學設計人:秦穎備課組長:陳艷萍年級主任:張寶東沈陽市第三十五中學生本課堂導學案學習目標:(1)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,能夠在具體問題中適當?shù)剡x取基底,使其他向量都能夠用基底來表達。(2)培養(yǎng)獨立思考及勇于探求的精神;
2025-08-17 14:03
【總結】應用平面向量基本定理解題舉例秭歸一中數(shù)學組周宗圣向量融數(shù)、形于一體,具有幾何與代數(shù)形式的雙重身份,因此向量的引入與應用極大地拓寬了解題的思想與方法。其解題方法歸納如下::將題目已知條件轉化成形式,其中、不共線,則.例1:設、、為非零向量,其中任意兩個向量不共線,已知+與共線,且+與共線,試問與+是否共線?并證明你的結論.證明:∵與共線,∴存在唯一實數(shù),使得=
2025-03-26 04:29
【總結】新課標人教版課件系列《高中數(shù)學》必修4《平面向量基本定理》教學目的?(1)了解平面向量基本定理;理解平面向量的坐標的概念;?(2)初步掌握應用向量解決實際問題的重要思想方法;?(3)能夠在具體問題中適當?shù)剡x取基底,使其他向量都能夠用基底來表達.?教學重點:平面向量基本定理.
2025-11-03 18:20
【總結】平面向量的基本定理及坐標表示平面向量基本定理平面向量的正交分解及坐標表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2025-10-31 06:28
【總結】基礎自主回扣命題熱點突破知能綜合檢測目錄下一頁上一頁末頁首頁章首課前練習:已知正△ABC的邊長為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會
2025-07-23 07:12
【總結】平面向量基本定理常用題型歸納何樹衡劉建一平面向量基本定理:如果是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量,有且僅有一對實數(shù)使得=平面向量基本定理是正交分解和坐標表示的基礎,它為“數(shù)”和“形”搭起了橋梁,,認為大致分為以下題型:一、基本題型隨處可見例1:在直角坐標平面上,已知O是原點,,若,求實數(shù)x,y的值解: ∴ 即x為-3,y為3
2025-03-25 01:38
【總結】關于《平面向量基本定理》的課后反思當前,新課程的改革與素質教育工作已全面展開,它對教育、教學不斷提出更新、更高的要求,而課堂教學是教育教學的主陣地,那種以老師講解為主,使學生常常處于消極、被動、受壓抑的狀態(tài),既不能充分地調動學生的主動性、積極性,又不能很好地培養(yǎng)學生的各方面能力的傳統(tǒng)灌輸教學法與新課程的改革理念及“以學生為本”的教學思想已是格格不入。所以課堂教學
2025-11-10 20:38
【總結】 平面向量基本定理[學習目標] ,,當一組基底選定后,.知識點一 平面向量基本定理(1)定理:如果e1,e2是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.(2)基底:把不共線的向量e1,e2叫做表示這一平面內所有向量的一組基底.思考 如圖所示,e1,e2是兩個不共線的向量,試用e1,e2表示向量,,,,
2025-06-19 18:18
【總結】第一篇:平面向量基本定理及相關練習(含答案) 平面向量2預習: :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時,a和b同向;(2)...
2025-11-06 04:03
【總結】......1.若不給自己設限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,不管是潮起潮落,也不管是陰晴圓缺,你都可以免去浮躁,義無反顧,勇往直前,輕松自如地走好人生路上
2025-07-20 14:28