【總結(jié)】第一篇:平面向量基本定理(教學(xué)設(shè)計(jì)) 平面向量基本定理 教學(xué)設(shè)計(jì) 平面向量基本定理教學(xué)設(shè)計(jì) 一、教材分析 本節(jié)課是在學(xué)習(xí)了共線向量基本定理的前提下,進(jìn)一步研究平面內(nèi)任一向量的表示,為今后平面...
2024-11-15 04:09
【總結(jié)】專題八平面向量的基本定理(A卷)(測試時(shí)間:120分鐘滿分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每小題5分,,只有一項(xiàng)是符合題目要求的.,向量,則向量()A.B.C.D. 【答案】A【解析】∵=(3,1),∴=(-7,-4),故選A.2.【201
2025-03-25 01:22
【總結(jié)】......平面向量基本定理及坐標(biāo)表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,存在唯一一對實(shí)數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2025-06-30 20:18
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實(shí)際問題的重要思想方法;?(3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá).?教學(xué)重點(diǎn):平面向量基本定理.
2024-11-12 18:20
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時(shí),λa與a方向相同;λ0時(shí),λa與a方向相反;λ=0時(shí)
2024-11-09 06:28
【總結(jié)】基礎(chǔ)自主回扣命題熱點(diǎn)突破知能綜合檢測目錄下一頁上一頁末頁首頁章首課前練習(xí):已知正△ABC的邊長為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會
2025-07-23 07:12
【總結(jié)】平面向量基本定理一、問題情境(1)如何求此時(shí)豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點(diǎn)OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12
【總結(jié)】當(dāng)時(shí),0??與同向,ba且是的倍;||b||a?當(dāng)時(shí),0??與反向,ba且是的倍;||b||a||?當(dāng)時(shí),0??0b?,且。||0
2024-11-09 03:31
【總結(jié)】(2)共線向量的一個充要條件:aa????0時(shí),與同向;?a?a=0時(shí),?00??a(1)實(shí)數(shù)與向量的積:a?定理:向量與非零向量共線的充要條
2025-07-25 17:39
【總結(jié)】沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案課題:平面向量基本定理科目:數(shù)學(xué)設(shè)計(jì)人:秦穎備課組長:陳艷萍年級主任:張寶東沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):(1)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá)。(2)培養(yǎng)獨(dú)立思考及勇于探求的精神;
2025-08-17 14:03
【總結(jié)】應(yīng)用平面向量基本定理解題舉例秭歸一中數(shù)學(xué)組周宗圣向量融數(shù)、形于一體,具有幾何與代數(shù)形式的雙重身份,因此向量的引入與應(yīng)用極大地拓寬了解題的思想與方法。其解題方法歸納如下::將題目已知條件轉(zhuǎn)化成形式,其中、不共線,則.例1:設(shè)、、為非零向量,其中任意兩個向量不共線,已知+與共線,且+與共線,試問與+是否共線?并證明你的結(jié)論.證明:∵與共線,∴存在唯一實(shí)數(shù),使得=
2025-03-26 04:29
【總結(jié)】平面向量基本定理常用題型歸納何樹衡劉建一平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且僅有一對實(shí)數(shù)使得=平面向量基本定理是正交分解和坐標(biāo)表示的基礎(chǔ),它為“數(shù)”和“形”搭起了橋梁,,認(rèn)為大致分為以下題型:一、基本題型隨處可見例1:在直角坐標(biāo)平面上,已知O是原點(diǎn),,若,求實(shí)數(shù)x,y的值解: ∴ 即x為-3,y為3
2025-03-25 01:38
【總結(jié)】等值線判讀學(xué)習(xí)目標(biāo):、運(yùn)用。、彎曲判讀方法和疏密判讀。4.通過等壓線、等高線、等溫線三種基本等值線方法歸納,讓學(xué)生學(xué)會知識遷移運(yùn)用,能獨(dú)立判讀其他類型的等值線圖,從而提高學(xué)生的讀圖思考能力。教學(xué)過程:基礎(chǔ)知識回顧1、等值線的概念和類型u將某地理要素?cái)?shù)值相等的點(diǎn)用光滑的線連接起來,叫做等值線。u等值線可以
2025-04-17 07:58
【總結(jié)】 平面向量基本定理[學(xué)習(xí)目標(biāo)] ,,當(dāng)一組基底選定后,.知識點(diǎn)一 平面向量基本定理(1)定理:如果e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.(2)基底:把不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底.思考 如圖所示,e1,e2是兩個不共線的向量,試用e1,e2表示向量,,,,
2025-06-19 18:18
【總結(jié)】第一篇:平面向量基本定理及相關(guān)練習(xí)(含答案) 平面向量2預(yù)習(xí): :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時(shí),a和b同向;(2)...
2024-11-15 04:03