【總結(jié)】4.2二次函數(shù)的性質(zhì)學(xué)習(xí)導(dǎo)航學(xué)習(xí)目標(biāo)重點(diǎn)難點(diǎn)重點(diǎn):利用配方法研究y=ax2+bx+c的性質(zhì).難點(diǎn):求二次函數(shù)在給定區(qū)間上的最大值、最小值.新知初探·思維啟動二次函數(shù)的性質(zhì)二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)如下表:a的符號
2025-10-31 02:28
【總結(jié)】二次函數(shù)y=ax2+bx+c(a≠0)一元二次方程ax2+bx+c=0(a≠0)二次函數(shù)與一元二次方程10-1221①方程與函數(shù)②方程與函數(shù)③方程與函數(shù)二次函數(shù)與一元二次方程之間有什么聯(lián)系?
2025-10-28 17:47
【總結(jié)】知識回顧?2。一次函數(shù)、正比例函數(shù)的定義是什么?噴泉(1)創(chuàng)設(shè)情境,導(dǎo)入新課(2)你們知道:投籃時,籃球運(yùn)動的路線是什么曲線?怎樣計(jì)算籃球達(dá)到最高點(diǎn)時的高度?(1)你們喜歡打籃球嗎?問題:二次函數(shù)請用適當(dāng)?shù)暮瘮?shù)解析式表示下列問題情境中的兩個變量
2025-07-23 20:25
【總結(jié)】二次函數(shù)復(fù)習(xí)課挑戰(zhàn)自我自我構(gòu)建基礎(chǔ)演練思維激活聚焦中考靈活運(yùn)用基礎(chǔ)知識之自我構(gòu)建請思考函數(shù)y=x2-4x+3,并寫出相關(guān)結(jié)論。同學(xué)們比一比,賽一賽,看誰寫得多.1.請寫出一個二次函數(shù)解析式,使其圖像的對稱軸為x=1,并且開口向下。
2025-08-01 12:31
【總結(jié)】二次函數(shù)y=ax2+bx+c的圖象(一)說案xy108642024681012141618202224一、教材分析二、教法·學(xué)法分析三、教學(xué)過程分析四、板書設(shè)計(jì)五、評價分析
2024-11-19 07:50
【總結(jié)】第二章二次函數(shù)1二次函數(shù)所描述的關(guān)系1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關(guān)系.(1)圓的半徑是xcm,圓的面積為ycm2,寫出y與x之間的函數(shù)關(guān)系式;xO(2)用總長為60m的籬笆圍成矩形場地,寫出場地面積y(m2)與矩形一邊長x(m)之間的函數(shù)關(guān)系式
2025-09-19 14:14
【總結(jié)】二次函數(shù)的實(shí)際應(yīng)用陡門鄉(xiāng)第二初級中學(xué)林惠注意:當(dāng)二次函數(shù)表示某個實(shí)際問題時,還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實(shí)數(shù)(3)開口方向:當(dāng)a>0時,拋物線開口向上;當(dāng)a<0時,拋物線開口向下。
2024-11-21 23:05
【總結(jié)】二次函數(shù)y=ax2的圖象1.在下列函數(shù)中,那些是一次函數(shù)?那些是二次函數(shù)?-----------------4-3-2-101234y=x2y=⑴y=2x–3⑶y=(x-
2024-11-22 02:30
【總結(jié)】如果正方體的棱長為x,那么正方體的表面積y會隨之而改變,y與x之間有什么關(guān)系?y=6x2試一試:探究問題1:試一試:探究問題2:要用總長為20米的鐵欄桿,一面靠墻,圍成一個矩形的花圃。圍成的面積y與邊長x有什么關(guān)系?(1)設(shè)矩形靠墻的一邊AB的
2024-11-21 02:55
【總結(jié)】二次函數(shù)與一元二次方程和二次函數(shù)的應(yīng)用主講於憲單位丹徒區(qū)冷遹中學(xué)審稿丹徒區(qū)教研室張文全?學(xué)習(xí)目標(biāo)?知識回顧?典型例題和及時反饋學(xué)習(xí)目標(biāo)?了解二次函數(shù)的圖像與x軸的交點(diǎn)個數(shù)和
2025-08-23 13:16
【總結(jié)】22.2二次函數(shù)與一元二次方程1.二次函數(shù)與一元二次方程的關(guān)系(1)探究:觀察圖22-2-1:圖22-2-1①二次函數(shù)y=x2+x-1的圖象與x軸有______個交點(diǎn),則一元二次方程x2+x-1=0的根的判別式Δ______0.2②二次函數(shù)y=x2-4x+4的
2024-11-22 04:09
【總結(jié)】第二章二次函數(shù)二次函數(shù)的應(yīng)用(第1課時)(1)請用長20米的籬笆設(shè)計(jì)一個矩形的菜園。(2)怎樣設(shè)計(jì)才能使矩形菜園的面積最大?ABCD)10(xxy??xx102???x解:設(shè)矩形的一邊長為米,面積為平方米,則y25)5(2????x5??x
2025-08-01 13:00
【總結(jié)】第六節(jié)二次函數(shù)基礎(chǔ)梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點(diǎn)式:.(3)交點(diǎn)式:.2.二次函數(shù)
2025-10-31 01:26
【總結(jié)】復(fù)習(xí)十二二次函數(shù)應(yīng)用(二)復(fù)習(xí)目標(biāo):通過復(fù)習(xí)進(jìn)一步理解并掌握二次函數(shù)有關(guān)性質(zhì),提高對二次函數(shù)綜合題的分析和解答的能力.,鉛球飛行時的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-x2+x+,則鉛球落地的水平距離為m.115321308米
2024-11-19 12:03
2025-11-03 17:28