【總結(jié)】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標(biāo)準(zhǔn)方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學(xué)們生活學(xué)習(xí)中見過拋物線的實例有哪些?噴泉探照燈的燈面平面內(nèi)與一個定點F和一條定直線l(l不過點F)的距離相等的點
2024-10-17 18:08
【總結(jié)】橢圓典型例題一、已知橢圓焦點的位置,求橢圓的標(biāo)準(zhǔn)方程。例1:已知橢圓的焦點是F1(0,-1)、F2(0,1),P是橢圓上一點,并且PF1+PF2=2F1F2,求橢圓的標(biāo)準(zhǔn)方程。解:由PF1+PF2=2F1F2=2×2=4,得2a==1,所以b2=3.所以橢圓的標(biāo)準(zhǔn)方程是+=1.2.已知橢圓的兩個焦點為F1(-1,0),F(xiàn)2(1,0),且2a=10,求橢圓的標(biāo)準(zhǔn)方程
2025-03-25 04:50
【總結(jié)】橢圓的定義、性質(zhì)及標(biāo)準(zhǔn)方程1.橢圓的定義:⑴第一定義:平面內(nèi)與兩個定點的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。⑵第二定義:動點到定點的距離和它到定直線的距離之比等于常數(shù),則動點的軌跡叫做橢圓。定點是橢圓的焦點,定直線叫做橢圓的準(zhǔn)線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動點軌跡是線段。②若常數(shù)小于,則動點
2025-08-10 15:59
2025-07-25 00:12
【總結(jié)】第2講橢圓、雙曲線、拋物線、標(biāo)準(zhǔn)方程與幾何性質(zhì)名稱橢圓雙曲線拋物線定義|PF1|+|PF2|=2a(2a|F1F2|)|PF|=點F不
2025-05-01 02:17
【總結(jié)】祝各位莘莘學(xué)子高考成功!高考數(shù)學(xué)考出好成績!橢圓與雙曲線性質(zhì)--(重要結(jié)論)清華附中高三數(shù)學(xué)備課組橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直
2025-04-17 13:17
【總結(jié)】雙曲線知識點一、雙曲線的定義:1.第一定義:到兩個定點F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點的軌跡((為常數(shù)))這兩個定點叫雙曲線的焦點.要注意兩點:(1)距離之差的絕對值.(2)2a<|F1F2|.當(dāng)|MF1|-
【總結(jié)】橢圓與雙曲線的對偶性質(zhì)100條橢圓1.2.標(biāo)準(zhǔn)方程:3.4.點P處的切線PT平分△PF1F2在點P處的外角.5.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.6.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.7.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.8.設(shè)A1、A2為橢圓的左、右
2025-08-04 17:12
【總結(jié)】....橢圓經(jīng)典題型一、選擇題:(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中有只有一項是符合題目要求的.)1.橢圓的焦距是() A.2 B. C. D.2.F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是()
2025-03-25 07:11
【總結(jié)】......橢圓與雙曲線的必背的經(jīng)典結(jié)論橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端
2025-06-20 08:28
【總結(jié)】橢圓與雙曲線中點弦斜率公式及其推論尤溪文公高級中學(xué)鄭明淮,.定理1(橢圓中點弦的斜率公式):設(shè)為橢圓弦(不平行軸)的中點,則有:證明:設(shè),,則有,兩式相減得:整理得:,即,因為是弦的中點,所以,所以定理2(雙曲線中點弦的斜率公式):設(shè)為雙曲線弦(不平行軸)的中點,則有證明:設(shè),,則有,兩式相減得:整理得:,即,因為是弦的中點,所以,所以例1、已知橢圓
2025-06-20 08:24
【總結(jié)】八、圓錐曲線:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若﹥|FF|,則軌跡不存在。若去掉定義中的絕
2025-06-16 19:49
【總結(jié)】練習(xí):求下列直線與雙曲線的交點坐標(biāo).直線與雙曲線位置關(guān)系及交點個數(shù)XYOXYO相交:兩個交點相切:一個交點相離:0個交點相交:一個交點例1:如果直線y=kx-1與雙曲線x2-y2=4僅有一個公共點,求k的取值范圍.分析:只有一個公共點,即方程組僅有一組實數(shù)解.
2024-11-10 21:43
【總結(jié)】圓錐曲線練習(xí)題(文科)一、選擇題(本大題共12小題,每小題5分,共60分)1.已知拋物線的準(zhǔn)線方程為x=-7,則拋物線的標(biāo)準(zhǔn)方程為( )A.x2=-28y B.y2=28xC.y2=-28x D.x2=28y2.設(shè)P是橢圓+=1上的點.若F1,F(xiàn)2是橢圓的兩個焦點,則|PF1|+|PF2|等于( )A.4B.5C.8
【總結(jié)】橢圓與雙曲線的對偶性質(zhì)--(會推導(dǎo)的經(jīng)典結(jié)論)高三數(shù)學(xué)備課組雙曲線1.雙曲線(a>0,b>0)的兩個頂點為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點的軌跡方程是.2.過雙曲線(a>0,b>o)上任一點任意作兩條傾斜角互補的直線交雙曲線于B,C兩點,則直線BC有定向且(常數(shù)).3.若P為雙曲線(a>0,b>0)右(或左)支上除頂點外的任一點,F1,
2025-08-17 04:20