【正文】
對(duì)金屬離子的識(shí)別效果是明顯不同的。離子識(shí)別結(jié)果表明:化合物 a 對(duì) Cu2+ 、Co 2+表現(xiàn)為熒光淬滅識(shí)別,淬滅效率分別為 %和 %;化合物 a 對(duì)于 Co2+、 Ni2+最大熒光發(fā)射波長(zhǎng)紅移分別為 、淬滅效率分為 %、%,表現(xiàn)出對(duì) Co2+和 Ni2+較好的敏感性?;衔?b 對(duì) Cu2+、Hg 2+表現(xiàn)為熒光增強(qiáng)識(shí)別,增強(qiáng)效率分別為 %和%,而對(duì) Ni2+表現(xiàn)為熒光淬滅識(shí)別,淬滅效率為 %。致 謝在為期三個(gè)半月的畢業(yè)論文走向尾聲之際,飽含著興奮與激動(dòng)的心情,我要感謝身邊所有幫助過(guò)我的人。首先感謝我的導(dǎo)師孫小冬老師,將我?guī)霟晒夥肿犹结樳@樣一個(gè)新興的研究領(lǐng)域,讓我身處科學(xué)研究的氛圍之中,領(lǐng)略到學(xué)習(xí)的樂(lè)趣。孫老師豐富扎實(shí)的理論知識(shí)、嚴(yán)謹(jǐn)求實(shí)的科學(xué)態(tài)度、謙和樸實(shí)的處世原則和堅(jiān)持不懈的奮斗精神都是我今后學(xué)習(xí)工作中的榜樣。孫老師對(duì)整個(gè)論文工作投入了大量心血,他的悉心指導(dǎo)和熱忱關(guān)懷促使我順利完成論文,在此,向?qū)O老師表示衷心的感謝和崇高的敬意。其次感謝實(shí)驗(yàn)室里的高愛(ài)美師姐、柴占永師兄,在實(shí)驗(yàn)之初教會(huì)我儀器的使用,在整個(gè)實(shí)驗(yàn)過(guò)程中幫助我把握了實(shí)驗(yàn)的各個(gè)環(huán)節(jié),使我能夠有序,規(guī)范的完成實(shí)驗(yàn)。他們勤奮好學(xué),刻苦鉆研的求實(shí)精神,樂(lè)于助人,自信樂(lè)觀(guān)的生活態(tài)度都深深的感染了我,使我能夠快樂(lè),充實(shí),自信的度過(guò)了整個(gè)畢業(yè)實(shí)驗(yàn)過(guò)程。感謝實(shí)驗(yàn)室其他同學(xué)在實(shí)驗(yàn)研究方面給予的支持,關(guān)心與幫助。感謝孫老師在實(shí)驗(yàn)儀器方面給予的支持與幫助。參考文獻(xiàn):[1] 朱維平, 徐玉芳, 錢(qián)旭紅. 具有重要生物學(xué)意義的重金屬及過(guò)渡金屬離子熒光分子探針[J]. 化學(xué)進(jìn)展, 2022, 19(9): 12291238.[2] 許勝 , 劉斌 , 田禾. 陰離子熒光化學(xué)傳感器新進(jìn)展[J]. 化學(xué)進(jìn)展, 2022, 18(6): 687697.[3] 徐海云 , 沈珍, 于艷紅, 等. 硼二吡咯 亞甲基染料類(lèi)分子熒光傳感器[J]. 無(wú)機(jī)化學(xué)學(xué)報(bào), 2022, 21(5): 617625.[4] Kimura, E., Koike, T. Recent development of zincfluorophores [J]. Chem. Soc. Rev, 1998, 27: 179184.[5] Kimura, E.,Aoki, S. Chemistry of zinc(Ⅱ ) fluorophore sensors [J]. Biometals, 2022, 14: 191204.[6] 宋心琦. 光化學(xué): 原理 技術(shù)應(yīng)用[M]. 北京: 高等教育出版社, 2022: 102142.[7] Valeur B. Molecular Fluorescence Principles and Applications[M]. Weinheim: WileyVCH, 2022.[8] 張春雷, 龔淑玲, 陳遠(yuǎn)蔭. 基于杯芳烴的陽(yáng)離子熒光分子探針的研究進(jìn)展[J]. 有機(jī)化學(xué), 2022, 27(7): 795805.[9] Gunnlaugsson T., Ali H D P., Glynn M et al. Fluorescent photoinduced electron transfer (PET) sensors for anions, From design to potential application[J]. Journal of Fluorescence, 2022, 15 (3): 287299.[10] Luo H Y., Jiang J H., Zhang X B et al. Synthesis of porphyrinappended terpyridine as a chemosensor for cadmium based on fluorescent enhancement[J]. Talanta, 2022, 72 (2): 575581.[11] Feng L H., Chen Z B. Screening mercury (II) with selective fluorescent chemosensor[J]. Sensors and Actuators BChemical, 2022, 122 (2), 600604.[12] 蔣林玲, 丁立平, 胡道道, 等. 基于PET過(guò)程的分子開(kāi)關(guān)型熒光傳感器研究進(jìn)展[J]. 應(yīng)用化學(xué), 2022, 23(10): 10691075.[13] 樊美公. 光化學(xué)基本原理與光子學(xué)材料科學(xué)[M]. 科學(xué)出版社, 2022: 319336.[14] 郭祥峰, 朱寶存, 劉媛媛. 4(氮雜15冠5)1, 8萘酰亞胺熒光探針的合成及性能研究[J]. 有機(jī)化學(xué), 2022, 26(4): 504507.[15] Xu Z C, Xiao Y, Qian X H et al. Rationmetric and selective fluorescent sensor for CuⅡ based on internal charge transfer(ICT) [J]. Organic Letters, 2022, 7(5): 889892.[16] Nolan E M, Jaworski J, Okamoto K I. QZ1 and QZ2: Rapid, Reversible quinolinederivatized Fluoresceins for sensing biological Zn(II) [J]. Am. Chem. Soc., 2022, 127 (48): 1681216823.[17] Nolan E M, Racine M E, Lippard S J. Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins [J]. In. Chem., 2022, 45: 27422749.[18] 王 紅萍, 崔愛(ài)軍, 田茂忠, 等. 氟硼熒 (BODIPY) 染料的研究進(jìn)展[J]. 當(dāng)代化工, 2022, 36(2): 198201.[19] Yunkou Wu, Xiaojun Peng, Binchen Guo, et al. Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn2+ in living Cells[J]. Organic amp。 Biomolecular Chemistry, 2022, 3, 13871392.[20] Baruah M, Qin W W, Vallee R A l, et al. A highly potassiumselective ratiometric fluorescent indicator based on BODIPY azacrown ether excitable with visible light[J]. Organic Letters, 2022, 7(20): 43774380.[21] 顏范勇, 陳立功, 閆喜龍. 羅丹明類(lèi)熒光染料的合成及應(yīng)用[J]. 化學(xué)進(jìn)展, 2022, 18(2/3): 252261.[22] Zhong H, Qian Z H, Xu L. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution [J]. Organic Letters, 2022, 8(5): 859861.[23] Xiang Y, Tong AI J. A new rhodaminebased chemosensor exhibiting selective Fe(III)amplified fluorescence [J]. Organic Letters, 2022, 8(8): 15491552.[24] Valeur B, Leray I. Ionresponsive supramolecular fluorescent systems based on multichromophoric calixarenes: A review[J]. Inanica Chimica Acta, 2022, 360(3): 765774.[25] Suzuki Y, Komatsu H, Iked T, et al. Design and synthesis of Mg2+selective fluoroionophores based on a coumarin derivative and application for Mg2+ measurement in a living cell[J]. Anal. Chem., 2022, 74: 14231428.[26] Maton L, Taziaux D, Soumillion J P, et al. About the use of an amide group as a linker in fluoroionophores: petition between linker and ionophore acting as chelating groups [J]. Mater. Chem., 2022, 15: 29282937.[27] Komatsu H, Miki T, Citterio D, et al. Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging [J]. . Chem. Soc., 2022, 127(31): 1079810799.[28] Dakanali M, Roussakis E, Kay A R, et al. Synthesis and photophysical properties of a fluorescent TRENtype ligand incorporating the coumarin chromophore and its zinc plex [J]. Tetrahedron Letters, 2022, 46(24): 41934196.[29] Yongmin Ma, Wei Luo, Peter J, et al. Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors[J]. Med. Chem, 2022, 47: 63496362.[30] Jiaobing Wang, Xuhong Qian, Jingnan Cui. Detecting Hg2+ Ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity [J]. Org. Chem., 2022, 71: 430843