【正文】
TM J, 1917, 17(part II):364~37714. Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates. Material and structure, 1991, 144(24):425~45015. 竹田仁一, 立川博之. 高速壓縮および引張を受けるユンりリートの力學(xué)的諸性質(zhì)について. “日本建筑學(xué)會論文報告集”第66號1960大會號第1部16. Malvar L J and John E C. Dynamic increase factors for concrete. TwentyEighth DDESB Seminar Orlando, FL, August 199817. Malvar L J and Ross C A. Review of strain rate effects for concrete in tension. ACI Materials Journal, 1998, 95(6):735~73918. Lindholm U S. Techniques in Metals Research. Ed. Bunshan R T, New York Interscience: 1971, 5(part1)19. Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. International Journal of Impact Engineering, 2001, 25:869~88620. Li Q M, Meng H. About the dynamics strength enhancement of concretelike materials in a split Hopkinson pressure bar test. International of Solids and Structures, 2003, 40:343~36021. Ragueneau F, Gatuingt F. Inelastic behavior modeling of concrete in low and high strain rate dynamics. Computers and Structures, 2003, 81:1287~129922. Cadoni E, Labibes K etc. Highstrainrate tensile behavior of concrete. Magazine of concrete research, 2000, 52(5):365~37023. Rossi P, Toutlemonde F. Effect of loading rate on the tensile behavior of concrete: description of the physical mechanisms. Materials and Structures, 1996, 29:116~11824. 尚仁杰, 混凝土動態(tài)本構(gòu)行為研究, 大連理工大學(xué)博士學(xué)位論文, 199425. Rossi P, Boulay C. Influence of free water in concrete on the cracking process. Magazine of Concrete Research, 1990, 42:143~14626. Rossi P. Influence of cracking in the presence of free water on the mechanical behavior of concrete. Magazine of Concrete Research, 1991,43(154):53~5727. Rossi P, van Mier JGM, Boulay C, et al. The dynamic behavior of concrete: influence of free water. Materials and Structures, 1992,25:509~51428. Serbe J. Mod233。lisation du portement du b233。ton en dynmique rapide, these de doctoral, 201。cole National des Ponts Chaus233。es, 199729. Gary G, Bailly P. Behavior of quasibrittle material at high strain rate experiment and modeling. European Journal of Mechanics, 1998, 17(3):40342030. Ba?ant Z P. Scaling of structural strength. London: Penton, 200231. Carpinteri A, Chiaia B, Ferro G. Multifractal scaling law for the nominal strength variation of concrete strength. in Size Effect In Concrete Structure, eds. H. Mhashi, H. Okamura, Z. P. Ba?ant, E amp。 FNSpon, 199432. Carpinteri A, Ferro G. Size effect on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructures. Materials and Structures, 1994, 27(174):563~57133. Tokyay M, Ozdemir M. Specimen shape and size effect on the pressive strength of higher strength concrete. Cement and Concrete Research, 1997, 27(8):1281128934. Karihaloo B L, Abdalla H M, Xiao Q Z. Size effect in concrete beam. Engineering Fracture Mechanics, 2003, 70:979~99335. Ince R, Arici E. Size effect in bearing strength of concrete cubes. Construction and Building Materials, 2004, 18:603~60936. Van Mier J G M, Van Vliet M R A. Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Engineering Fracture Mechanics, 2000, 65:165~18837. Van Mier J G M, Van Vliet M R A. Influence of microstructure of concrete on size/scale effects in tensile fracture. Engineering Fracture Mechanics, 2003, 70:2281~230638. 錢覺時, 黃煜鑌. 混凝土強度尺寸效應(yīng)的研究進展. 混凝土與水泥制品, 2003, 3:1~539. Krauthammer T, Elfahal M M, Lim J, Ohnl T, Beppu M, Markeset G. Size effect for highstrength concrete cylinders subjected to axial impact. International Journal of Impact Engineering, 2003, 28:1001~101640. Elfahal M M, Krauthammer T, Ohnl T, Beppu M, Mindess S. Size effect for nornal strength concrete cylinders subjected to axial impact. International Journal of Impact Engineering, 2005, 31:461~48141. CEB. Concrete structures under impact and implosive loading, Synthesis report, Bulletin d'information (Committee EuroInternational du Beton Lausanne, 1988)42. Gebbeken N, Ruppert M. A new material model for concrete in highdynamic hydrocode simulations. Archive of Applied Mechanics, 2000,70:463~47843. Tedesco J W, Ross C A. StrainRateDependent Constitutive Equation for Concrete. Journal of Pressure Vessel Technology, 1998,120:398~40544. Jitsu K etc. Effects of strain rate on concrete strength subjected to impact loaddynamic pressive strength test by Split Hopkinson Pressure Bar method. International Conference on Structures Under Shock and Impact, 1998,471~48045. Chern J C, Chen C H. The multiaxial constitutive law for concrete structures subjected to impact loading. J Chinese Institute of Engineers, 1987,10:625~63846. Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. International Journal of Impact Engineering, 2001, 25:869~88647. 董毓利, 謝和平, 趙鵬. 不同應(yīng)變率下混凝土受壓全過程的實驗研究及其本構(gòu)模型. 水利學(xué)報, 1997,7:72~7748. 肖詩云等. 應(yīng)變率對混凝土抗拉特性影響. 大連理工大學(xué)學(xué)報, 2001,41(6):721~72449. 陳書宇. 沖擊載荷下的混凝土動態(tài)力學(xué)模型. 力學(xué)學(xué)報, 2002,34(增刊):260~26350. Soroushian P. Choi K and Kowalczak R. Ductility of Plain and Confined Concrete Under Different Strain Rates. ACI Journal, 1984:73~8151. Lu Y, Xu K. Modeling of dynamic behavior of concrete materials under blast loading. International Journal of Solids and Structures, 2004, 41: 131~14352. Paulmann K, Steinert J. ‘Beton bei sehr kurzer Belastungsgeschichte’(Concrete under very shortterm loading), Beton , 1982,32(6):225~22853. Hsu TTC. Unified theory of reinforced concrete. Boca Raton, FL。 CRC Press。 199354. Zhang LX, Hsu TTC. Behavior and analysis of 100 MPa concrete membrane elements. Journal of Structure Engineering(ASCE) 1998,124(1):243455. Zhu RH, Hsu TTC, Lee JY. Rational shear modulus for smearedcrack analysis of reinforced concrete. Struct J Am ConCr Inst 2001,98(4):44345056. Belarbi A, Hsu TTC. Constitutive laws of concrete in te