【導讀】比較法經常證明什么樣的不等式。高次整式多項式、所證不等式兩邊。有相同或局部相同的部分。作差之后變形的思維。完全平方、因式積。利用重要不等式再結合不等式的性質來。證明不等式的方法。由所證不等式出發(fā)尋找使結論成立的條件。無理不等式、分式不等式或。所證明不等式形式比較麻煩時。比較法-------綜合法-------分析法。么樣的不等式,如何根據(jù)特點
【總結】Mathwang幾個經典不等式的關系一幾個經典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關證明(1)用排
2025-04-17 08:24
【總結】第一篇:不等式的證明 復習課:不等式的證明 教學目標 (1).理解絕對值的幾何意義并能用其證明不等式和解絕對值不等式.(2).了解數(shù)學歸納法的使用原理.(3).會用數(shù)學歸納法證明一些簡單問題...
2024-11-08 22:00
【總結】高二數(shù)學(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質量.不過,我們可作第二次測量:把物體調換到天平的另一盤上,此時稱得物體的質量為的質量呢?:
2025-08-05 03:53
【總結】不等式的證明(二)高三備課組反證法:從否定結論出發(fā),經過邏輯推理,導出矛盾,證實結論的否定是錯誤的,從而肯定原結論是正確的證明方法。換元法:換元法是指結構較為復雜、量與量之間關系不很明了的命題,通過恰當引入新變量,代換原題中的部分式子,簡化原有結構,使其轉化為便于研究的形式。用換元法證明不等式時一定要注意新元的約
2025-07-24 02:36
【總結】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【總結】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實數(shù),求證:x3+y...
2024-11-14 12:00
【總結】第一篇:不等式證明 不等式證明 不等式是數(shù)學的基本內容之一,它是研究許多數(shù)學分支的重要工具,在數(shù)學中有重要的地位,也是高中數(shù)學的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,...
2024-11-03 17:55
【總結】不等式證明方法(五)判別式法、構造法、逆代法一、判別法通過對所證不等式的觀察、分析,構造出二次方程,證明中借助于二次方程的判別式,從而使不等式得證。.320,,:,2,,,,:12222azyxazyxazyxRzyx且不大于均不小于求證且已知例???????044)(44:2)(:2222222?????
2025-08-23 13:47
【總結】第一篇:均值不等式的證明 均值不等式的證明 設a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2024-11-05 22:00
【總結】不等式與不等式組復習課呂河初中袁文宏請選擇自己喜歡的方式(邊閱讀教科書邊思考或先閱讀教科書后思考)用5分鐘時間回憶本章內容,嘗試解決下面問題:(1)本章都學習了哪些概念?哪些運算?你想對同伴做哪些友情提示?(2)你準備建構怎樣的知識網絡圖描述本章知識點之間的聯(lián)系
2024-12-07 17:25
【總結】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2024-10-28 10:42
【總結】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應用 基本不等式在求解最值、值域等方面有著重要的應用,利用基本不等式時,關鍵在對已知條件的靈活...
2024-10-29 03:11
【總結】不等式的證明——綜合法導入新課1.證明().2.比較與的大小,并證明你的結論.嘗試探索,建立新知,求證例1已知證明:因為,則所以故①利用某些已經證明過的不等式和不等式的性質推導出所要證明的不等式成立,這種證明方法通常叫做綜合法.②綜合法的思路是“由因
2025-07-26 00:13
【總結】第一篇:不等式的證明(推薦) 不等式的基本性質 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個數(shù)是() (A)0(B)1(C)2(D)3[...
【總結】課題:含有絕對值的不等式問題當時,則有:那么與及的大小關系怎樣?絕對值的定義:問題這需要討論:當綜上可知:當當定理1:如果a,b是實數(shù),則當且僅當時,等號成立.(1)從向量的角度看:不共線時,由于定理1與三角形之間的這種聯(lián)
2025-08-05 15:37