【總結】第十七章 勾股定理 勾股定理第1課時 勾股定理的認識知識點1知識點2勾股定理的證明選項中,不能用來證明勾股定理的是(??D??)2.【教材延伸】如圖,“趙爽弦圖”是由四個全等的直角三角形拼成一個大的正方形,是我國古代數學的驕傲,巧妙地利用面積關系證明了勾股定理.已
2025-06-15 12:01
【總結】第十七章勾股定理學練考數學八年級下冊R勾股定理的逆定理第1課時勾股定理的逆定理
2025-06-12 14:19
【總結】第2課時 勾股定理的實際應用實際生活中的與直角三角形有關的許多問題.如長度、高度、距離、面積、體積等問題往往需要用勾股定理來解決.強量得家里新購置的彩電熒光屏的長為58cm,寬為46cm,則這臺電視機的尺寸(即電視機屏幕對角線的長度,實際測量的誤差可不計)是( )(約2
2025-06-14 20:58
【總結】第十七章 勾股定理 勾股定理第1課時 勾股定理:如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么 .?明勾股定理的常用方法: ,如“趙爽弦圖”等.積如圖所示,則面積為S的正方形的邊長是( ) ?a2+b2=c2
2025-06-18 12:26
2025-06-17 20:59
【總結】第十七章勾股定理勾股定理第1課時勾股定理的驗證勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a,b,c三條邊滿足的關系式是.a2+b2=c2知識點1:勾股定理的認識解:(1)A所代表的正方形的面積為144+81=225.(2)B所代表的正方形的面積為625-400=22
2025-06-16 15:03
【總結】勾股定理第2課時勾股定理的實際應用第2課時勾股定理的實際應用知識目標1.在理解直角三角形三邊關系的基礎上,通過對實際問題的分析,能用勾股定理解決與直角三角形三邊有關的實際問題.2.利用勾股定理,結合“兩點之間,線段最短”,會求平面上兩點之間的最短距離.3.在掌握立體圖形展開圖的前提下,利用勾股定理求立體圖
2025-06-17 01:48
【總結】第18章 勾股定理 第 第2課時 勾股定理的應用課時 勾股定理的應用 第2課時 勾股定理的應用目標突破目標突破總結反思總結反思第18章 勾股定理知識目標知識目標知識目標知識目標第2課時 勾股定理的應用目標突破目標突破目標一 會利用勾股定理解決實際問題第2課時 勾股定理的應用第2課時 勾股定理的應用
2025-06-20 12:03
【總結】第18章勾股定理勾股定理知識點勾股定理的應用1.將13米長的梯子靠在一堵墻上,若梯子的底部離墻角5米,則梯子的頂部離墻角(B)A.11米B.12米C.13米D.14米2.如圖,在邊長為1個單位長度的正方形網格中,以網格線的交點為頂點構成△A
2025-06-13 12:20
【總結】 勾股定理的逆定理第1課時 勾股定理的逆定理知識點1知識點2勾股定理的逆定理組線段中,能構成直角三角形的是(??C??),3,4,4,6,12,13,6,7△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,三邊長滿足b2-a2=c2,則互余的一對角是(
【總結】第2課時勾股定理在實際生活中的應用通過預習利用勾股定理解決生活中的實際問題.知識點:勾股定理的應用【思路點撥】注重數形結合的思想,把實際問題轉化為數學問題來解決.例1如圖所示,一個圓柱形鐵桶的底面半徑是12cm,高為10cm,若在其中隱藏一細鐵棒,問鐵棒的長度最長不能超過多長?解:由題意可知:底面圓的半徑為12
2025-06-12 12:11
【總結】第一頁,編輯于星期六:七點五十一分。,第二頁,編輯于星期六:七點五十一分。,,第三頁,編輯于星期六:七點五十一分。,第四頁,編輯于星期六:七點五十一分。,第五頁,編輯于星期六:七點五十一分。,第六頁,...
2024-10-22 03:57
【總結】勾股定理的逆定理第十七章勾股定理導入新課講授新課當堂練習課堂小結八年級數學下(RJ)教學課件第1課時勾股定理的逆定理學習目標、定理的概念、關系及勾股數.(重點),能利用勾股定理的逆定理判斷一個三角形是直角三角形.(難點)導入
2025-06-17 07:02
【總結】第十七章勾股定理勾股定理第3課時利用勾股定理證明與作圖學習指南知識管理歸類探究分層作業(yè)當堂測評學習指南★本節(jié)學習主要解決以下問題★1.利用勾股定理表示無理數此內容為本節(jié)的重點.為此設計了【歸類探
2025-06-21 03:18
【總結】第2課時 勾股定理的逆定理的應用知識點1知識點2勾股定理逆定理的實際應用師傅測量一個等腰三角形工件的腰、底及底邊上的高,并按順序記錄下數據,量完后,不小心與其他記錄的數據記混了,請你幫助這位師傅從下列數據中找出等腰三角形工件的數據(??B??),10,10,10,
2025-06-18 18:41