【正文】
,這兩端支撐決定了彈簧夾頭的實(shí)際中心線。前端支撐的精度對(duì)彈簧夾頭中心偏移的影響較大,后端的影響要小些。 彈性元件前端裝卡工件的孔對(duì)外錐面的徑向跳動(dòng)布錐套內(nèi)錐面對(duì)機(jī)床主軸中心線的跳動(dòng),這兩項(xiàng)的積累誤羞將直接反映在夾持工件的徑向跳動(dòng)上。后端導(dǎo)向圓柱的各項(xiàng)跳動(dòng)積累誤差以及配合間隙對(duì)夾持工件徑向跳動(dòng)的關(guān)系則要復(fù)雜得多。結(jié)論與展望我做的課題是六角螺栓車總長(zhǎng)裝置設(shè)計(jì),綜合國(guó)內(nèi)外及其他省市的先進(jìn)經(jīng)驗(yàn)與不足之處,基于本市某場(chǎng)的加工過(guò)程并考慮到他們的要求進(jìn)行了創(chuàng)新性的研究。該課題是對(duì)某企業(yè)實(shí)際產(chǎn)品的加工過(guò)程設(shè)計(jì),具有較強(qiáng)的實(shí)踐性,需實(shí)習(xí)調(diào)研過(guò)程。在我們?nèi)?shí)踐觀察的過(guò)程中不僅提高了自身的觀察能力而且也同時(shí)提高了我們的思考,判斷等綜合能力。通過(guò)對(duì)該課題的研究和設(shè)計(jì),可以鞏固學(xué)生對(duì)所學(xué)理論知識(shí)掌握,提高學(xué)生解決實(shí)際生產(chǎn)中設(shè)計(jì)開發(fā)問(wèn)題的能力和創(chuàng)新性。由于是大批量生產(chǎn)如果用三爪卡盤就行裝夾,效率方面肯定是上不去的,在這樣的基礎(chǔ)上我們進(jìn)行了改裝,設(shè)計(jì)出了配套的彈簧夾頭與氣壓頂緊的裝置,以致使生產(chǎn)效率得到了很大的提高。從中也是我們運(yùn)用所學(xué)知識(shí)和技能來(lái)解決實(shí)際問(wèn)題的一個(gè)重要環(huán)節(jié),更是對(duì)大學(xué)階段所學(xué)關(guān)于機(jī)械及氣壓知識(shí)和實(shí)際動(dòng)手能力的一個(gè)考察。通過(guò)這次課題,不但可以提高我們的綜合訓(xùn)練設(shè)計(jì)能力、科研能力,其中包括實(shí)際動(dòng)手能力、查閱文獻(xiàn)能力,撰寫論文能力,還是一次十分難得的提高創(chuàng)新能力的機(jī)會(huì),并且使我在以下幾個(gè)方面得到訓(xùn)練:了解氣壓傳動(dòng)系統(tǒng)設(shè)計(jì)的基本方法和設(shè)計(jì)要求,培養(yǎng)了我們運(yùn)用所學(xué)理論知識(shí)解決具體工程技術(shù)問(wèn)題的能力。掌握氣壓傳動(dòng)系統(tǒng)的設(shè)計(jì)步驟,熟悉設(shè)計(jì)的有關(guān)技術(shù)文件,規(guī)范設(shè)計(jì)手冊(cè)及相關(guān)元件的國(guó)家標(biāo)準(zhǔn)。根據(jù)設(shè)計(jì)任務(wù)要求,進(jìn)行工況分析和確定氣壓系統(tǒng)的氣壓元件擬定出氣壓系統(tǒng),并對(duì)氣壓系統(tǒng)主要性能作必要的設(shè)計(jì)計(jì)算。本課題自己雖然對(duì)彈簧夾頭進(jìn)行了相關(guān)的設(shè)計(jì),并在熱處理方面進(jìn)行了相應(yīng)的研究,但是還有些地方自己美有考慮到,譬如說(shuō)一些精度的分析方面,自己采用的只是彈簧夾頭的中的一種,并沒(méi)有比較其他形式的彈簧夾頭的優(yōu)劣。這對(duì)企業(yè)來(lái)說(shuō)是一個(gè)比較關(guān)心的內(nèi)容,如果我們?cè)谝院蟮脑O(shè)計(jì)中可以加以考慮,我覺(jué)得可以將利潤(rùn)提到最高。彈簧夾頭所用的材料上面自己也沒(méi)有進(jìn)行比較,至于這方面由于自己沒(méi)有相關(guān)的資料,所以自己按照網(wǎng)上的一些資料就選擇了彈簧鋼 65Mn。在結(jié)構(gòu)與材料上面自己存在的缺陷希望下屆的同學(xué)可以幫自己加以完善。致 謝本論文是在導(dǎo)師梁利東老師的指導(dǎo)下完成的,自始至終都傾注著導(dǎo)師的大量心血。梁老師不僅在學(xué)業(yè)上給予我精心的指導(dǎo),還在生活上給予我悉心的關(guān)懷。我不僅在學(xué)習(xí)上有了很大的提高,同時(shí)也學(xué)會(huì)了很多做人做學(xué)問(wèn)的道理。在此,謹(jǐn)向梁老師表示最衷心的感謝。本課題研究的傳動(dòng)方式采用氣壓傳動(dòng),感謝徐振法老師在這方面給予我的許多有效的指導(dǎo)和支持。感謝四年來(lái)教導(dǎo)過(guò)我的所有老師,是你們平時(shí)的諄諄教導(dǎo)使我能有今天的成績(jī);感謝陪伴四年的室友,在學(xué)習(xí)生活上你們都給了我很大的幫助,謝謝大家。感謝阮林,張貴修,許蒙蒙等同學(xué)給予我許多幫助和支持,在設(shè)計(jì)過(guò)程中,我們一次次的對(duì)不懂的問(wèn)題進(jìn)行探討,若是沒(méi)有他們,也就不會(huì)有這篇論文的產(chǎn)生。同樣感謝本組其他同學(xué)吳安嬌,李婷婷,陳瑞杰,吳勝宏你們陪我在這半年一起成長(zhǎng)。感謝父母對(duì)我的支持和理解,感謝一切曾經(jīng)鼓勵(lì)、支持和幫助過(guò)我的人,衷心地謝謝大家!參考文獻(xiàn)【1】 【2】 【3】 朱耀祥,【4】 :技師, 【5】 熱處理手冊(cè):典型零件熱處理 第 4 版. 中國(guó)機(jī)械工程學(xué)會(huì)熱處理學(xué)會(huì)【6】 【7】 .【8】 .【9】 .【10】.【11】彈簧夾頭工藝 制造質(zhì)量分析. 一機(jī)部通用與可調(diào)正夾具交流會(huì)【12】JeongDu of burrs in spring collets by abrasive flow machining.【13】Modern Machine Shop。 Dec2022, Vol. 83 Issue 7, p110115, COLLET CHUCKS.【14】Modern Machine To Use A Collet Chuck.【15】Journal of Mechanical Working force distribution of collet chuck holders for machining centers.附錄 A外文文獻(xiàn)及其翻譯 COLLECT CHUCKTo improve productivity in micro/mesoscale ponents,researchers have focused on developing miniaturized manufacturing instruments,such as micromachine miniaturized systems are expected to save energy and be easily first step in micromanufacturing instruments is miniaturizing the corresponding particular,micromachine tools for materialremoval processes have,as a key subsystem,a microspindle unit that must achieve high rotational speeds while maintaining good rotational accuracy for microfeature machining.In developing microspindle units,a critical problem is miniaturization of the toolclamping part that holds the tool in the for scaling down conventional tool clamps,such as the colletchuck,hydraulic chuck,and shrinkfit methods,may be limited by their inherently plicated structural and operational colletchucks,a tapered collet and colletpulling device,such as a spring and a screw,must be included in the addition,a tapered collet causes tolerance stackup,which may increase rotation error chucks have a nonaxisymmetric structure inside the spindle due to the need for an adjusting screw and oil elements unbalance the rotor mass, increasing rotation error motion at highspeed , shrinkfit tool holders require specific equipment to heat the device to a high temperature to unclamp a tool,equipment that is too expensive and too large for use with micromachine possible way to avoid these problems is to incorporate a shape memory alloy(SMA).SMAs have recently been used in various applications,such as actuators,fasteners,bone fixaters, and so on[7–13].They are lightweight,allow easy and precise installation,yield excellent reliability,and provide good immunity against shock and employing SMA for a tool clamp, the clamp can be simplified because the SMA directly provides the radial toolclamping force on the tool to this simple structure,further miniaturization is possible,so it has an advantage of good immunity against the effect of centrifugal addition,unlike a colletchuck,an SMAbased tool clamp does not require a collet to develop clamping force。this eliminates the tolerance stackup that results from the SMAbased device also has an axisymmetric structural configuration,unlike a hydraulic chuck,which minimizes the effect of mass ,the tool clamp can switch between the clamped and unclamped states by using a simple device toregulate small changes in temperature,thereby eliminating the need for the expensive heating equipment used in shrinkfit this study,we developed a tool clamp based on SMA for applications in microspindle ,we developed the basic configuration of the tool clamp using an SMA ring,and described the principle of clamping/unclamping the tool ,we conducted threedimensional(3D)finite element method(FEM)analyses to assess the characteristics of the clamping/unclamping operations and the effect of centrifugal ,we designed and built a prototype of the SMAbased tool ,we experimentally evaluated the time needed for clamping/unclamping operations and the toolclamping ,we used the prototype to conduct a millmachining test to confirm that it was unaffected by centrifugal force at high rotational speeds. memory alloysSMAs are a unique class of alloys that are characterized by the shape memory SMA that is deformed in a lowtemperature phase,called the martensitic phase,can recover its original shape upon heating to the reverse transformation temperature,where the SMA enters the austenitic the SMA is impeded by an external mechanical structure as it is returning to its original shape,‘recovery stresses’are relationships between stresses and strains in SMA materials are a function of temperature[15].In the lowtemperature phase,SMAs have a smaller Young’s modulus and yield strength than at higher is,SMAs in the martensitic phase are more easily deformed elastically or plastically than those in the austenitic ,an SMA’s recovery stress