【總結】相似三角形相似三角形的判定第1課時【基礎梳理】(1)定義:三個角分別_____,三條邊_______的兩個三角形.(2)記法:△ABC與△A′B′C′相似,記作△ABC___△A′B′C′.相等成比例∽(3)相似比:相似三角形_______的比.(4)性質:相似三
2025-06-17 20:28
【總結】相似三角形的判定第3課時【基礎梳理】(1)內容:_____分別相等的兩個三角形相似.(2)應用格式:如圖,在△ABC和△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△____.兩角DEF(1)內容:_____和一條_______成比例的兩個直角三角形相似.(2)應用格式
【總結】 相似三角形應用舉例察者眼睛的位置稱為 ,由視點出發(fā)的線稱為 ;在進行測量時,從下向上看,視線與水平線的夾角叫做 .?圖是小明在同一地點觀察左、右并排的兩棵大樹AB和CD的示意圖,根據(jù)圖中的條件回答下列問題:視點是點 ,視線是 , ,仰
2025-06-17 15:46
【總結】相似三角形第二十七章相似課堂達標素養(yǎng)提升第二十七章相似相似三角形的性質1.2022·重慶若△ABC∽△DEF,且相似比為3∶2,則△ABC與△DEF的對應高的比為()A.3∶2B.3∶5C.9∶4D.4∶9課堂達標
2025-06-16 13:27
【總結】第2課時 相似三角形的判定(2)邊 且夾角 的兩個三角形相似.?說明△ABC∽△A'B'C'的條件是( )△ABC和△A'B'C'中,若∠B=∠B',AB=6,BC=8,B'C'=4,則當A'B'= 時,△
2025-06-18 02:36
【總結】 相似三角形 相似三角形的判定第1課時 相似三角形的判定(1)邊形中,最簡單的就是 .?△ABC和△A'B'C'中,如果∠A=∠A',∠B=∠B',∠C=∠C',,即三個角分別
2025-06-18 02:37
【總結】第3課時 相似三角形的判定(3)別 的兩個三角形相似.?對三角形中不一定相似的是( )△ABC中,∠A=54°,∠B=78°;在△A'B'C'中,∠C'=48°,∠B'=78°△ABC中,∠C=90°,AC=4cm,
2025-06-18 02:44
【總結】第2課時 相似三角形的判定(2)學前溫故新課早知邊的直線和其他兩邊相交,所構成的三角形與原三角形 .?邊成比例的兩個三角形 .?相似相似學前溫故新課早知邊 的兩個三角形相似.?△ABC的三邊長分別為6cm,cm,9cm,△DEF的一邊長為4
2025-06-19 12:03
【總結】相似三角形的判定第4課時兩角分別相等的兩個三角形相似九年級下冊學習目標?“兩角分別相等的兩個三角形相似”的含義,能分清條件和結論,并能用文字、圖形和符號語言表示;?“兩角分別相等的兩個三角形相似”判定兩個三角形相似,并解決簡單的問題;1.已知△ABC中,∠A=40°,∠B=75°
2025-06-12 12:07
【總結】第3課時 相似三角形的判定(3)新課早知學前溫故兩邊 且夾角 的兩個三角形相似.?成比例 相等別 的兩個三角形相似.?對三角形不一定相似的是( )△ABC中,∠A=54°,∠B=78°;在△A'B'C'中,∠C'=
【總結】 相似三角形 相似三角形的判定第1課時 相似三角形的判定(1)學前溫故新課早知邊形的對應角 ,對應邊 ;如果兩個多邊形滿足對應角 ,對應邊 ,那么這兩個多邊形 .?邊形對應邊的比稱為 .?相等成比例
2025-06-17 12:03
2025-06-18 12:03
【總結】相似三角形的判定第2課時三邊成比例的兩個三角形相似九年級下冊學習目標?“三邊成比例的兩個三角形相似”的判定方法;?“三邊成比例的兩個三角形相似”的判定方法解決簡單問題;Rt△ABC中,∠C=90°,AB=10,BC=6,在Rt△EDF中,∠F=90°,DF=3,EF
【總結】相似三角形的性質相似三角形應用舉例第二十七章相似考場對接題型一利用相似三角形的性質計算例題1有一個三角形的三邊長分別為3,4,5,若另一個與它相似的三角形的最短邊長為9,求出另一個三角形的周長P和面積S.解∵32+42=52,∴此三