【總結】北師大版九年級下冊數(shù)學你還能舉出更多正多邊形的例子嗎?情境導入本節(jié)目標.、邊心距、中心角之間的關系,會應用多邊形和圓的有關知識畫多邊形.分別求出半徑為R的圓內接正三角形、正方形的邊長、邊心距和面積.【解析】作等邊△ABC的BC邊上的高AD,垂足為D連接OB,則OB=R,在Rt△OBD中,∠O
2025-06-15 05:28
【總結】北師大版九年級下冊數(shù)學弧長及扇形的面積⊙O的半徑為R,⊙O的周長是多少?⊙O的面積是多少??C=2πR,S=πR2.角的頂點在圓心,角的兩邊分別與圓還有一個交點,這樣的角叫做圓心角.情境導入本節(jié)目標,培養(yǎng)學生的探索能力.,并運用公式解決問題;訓練學生的數(shù)學運用能力.10厘米的
2025-06-15 05:26
【總結】3垂徑定理第三章圓課堂達標素養(yǎng)提升3垂徑定理第三章圓課堂達標一、選擇題3垂徑定理1.如圖K-21-1,AB是⊙O的直徑,弦CD⊥AB,垂足為M,則下列結論不一定成立的是()A.CM=DM
2025-06-15 12:12
2025-06-16 15:07
【總結】第二章二次函數(shù)復習課(1)九年級下冊1.二次函數(shù)的概念一般地,形如(a,b,c是常數(shù),)的函數(shù),叫做二次函數(shù).[注意](1)等號右邊必須是整式;(2)自變量的最高次數(shù)是2;(3)當b=0,c=0時,y=ax2是特殊的二次函數(shù).2.
2025-06-15 05:27
【總結】第二章二次函數(shù)復習課(第二課時)九年級下冊1.利用二次函數(shù)求最值的問題(1)利潤最大化——體會利用二次函數(shù)求解最值的一般步驟.利用二次函數(shù)解決“利潤最大化”問題的一般步驟:①找出銷售單價不利潤乊間的函數(shù)關系式(注明范圍);②求出該二次函數(shù)圖象的頂點坐標;③由函數(shù)頂點坐標求得其最值,即求得“最大利潤”
2025-06-15 05:25
【總結】EE
2025-06-14 05:17
2025-06-14 21:28
【總結】勤學的人,總是感到時間過得太快;懶惰的人,卻總是埋怨時間跑得太慢。
2024-11-25 22:46
【總結】北師大版九年級下冊數(shù)學某果園有100棵橙子樹,平均每棵樹結600個橙子.現(xiàn)準備多種一些橙子樹以提高果園產量,但是如果多種樹,那么樹乊間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經驗估計,每多種一棵樹,平均每棵樹就會少結5個橙子。情境導入本節(jié)目標1、通過三個問題情境列函數(shù)關系式,在教師的引導下歸納總結二次函數(shù)的定
【總結】第三章圓知識點1垂徑定理及推論(A)①弦的垂直平分線經過圓心;②平分弦的直徑垂直于弦;③平分弦的直徑平分弦所對的兩段弧.☉O中,弦AB的長為6,圓心O到AB的距離為4,則☉O的半徑為(C)3.(瀘州中考)如圖,AB是☉O的直徑,弦C
2025-06-17 12:05