freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)答題技巧及知識(shí)歸納總結(jié)-資料下載頁(yè)

2025-05-01 05:28本頁(yè)面
  

【正文】 點(diǎn)在拋物線的外部.(3)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(4) 點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(1)拋物線上一點(diǎn)處的切線方程是. (2)過(guò)拋物線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)拋物線與直線相切的條件是.第三部分 導(dǎo)數(shù)及其應(yīng)用導(dǎo)數(shù)定義:在點(diǎn)處的導(dǎo)數(shù)記作;.函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義是曲線在點(diǎn)處的切線的斜率. 常見函數(shù)的導(dǎo)數(shù)公式:①;②; ③;④;⑤;⑥; ⑦;⑧導(dǎo)數(shù)運(yùn)算法則: ; ;.在某個(gè)區(qū)間內(nèi),若,則函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;若,則函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.求函數(shù)的極值的方法是:解方程.當(dāng)時(shí):如果在附近的左側(cè),右側(cè),那么是極大值;如果在附近的左側(cè),右側(cè),那么是極小值.求函數(shù)在上的最大值與最小值的步驟是:求函數(shù)在內(nèi)的極值;將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.第四部分 復(fù)數(shù)1.基本概念(1) z=a+bi∈Rb=0 (a,b∈R)z= z2≥0;(2) z=a+bi是虛數(shù)b≠0(a,b∈R);(3) z=a+bi是純虛數(shù)a=0且b≠0(a,b∈R)z+=0(z≠0)z20;(4) a+bi=c+dia=c且c=d(a,b,c,d∈R);2.復(fù)數(shù)的代數(shù)形式及其運(yùn)算:設(shè)z1= a + bi , z2 = c + di (a,b,c,d∈R),則:(1) z 1177。z2 = (a + b)177。 (c + d)i;(2) = (a+bi)(c+di)=(acbd)+ (ad+bc)i;(3) z1247。z2 = (z2≠0) 。3.幾個(gè)重要的結(jié)論:(1) ; (2) 性質(zhì):T=4;; (3) 。⑷4.運(yùn)算律:(1)5.共軛的性質(zhì):⑴ ;⑵ ;⑶ ;⑷ 。高中數(shù)學(xué)選修41知識(shí)點(diǎn)總結(jié)平行線等分線段定理平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。推理1:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。推理2:經(jīng)過(guò)梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。平分線分線段成比例定理平分線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。相似三角形的判定及性質(zhì)相似三角形的判定:定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對(duì)應(yīng)邊的比值叫做相似比(或相似系數(shù))。由于從定義出發(fā)判斷兩個(gè)三角形是否相似,需考慮6個(gè)元素,即三組對(duì)應(yīng)角是否分別相等,三組對(duì)應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們?cè)?jīng)給出過(guò)如下幾個(gè)判定兩個(gè)三角形相似的簡(jiǎn)單方法:(1)兩角對(duì)應(yīng)相等,兩三角形相似;(2)兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對(duì)應(yīng)成比例,兩三角形相似。預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與三角形相似。判定定理1:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩角對(duì)應(yīng)相等,兩三角形相似。判定定理2:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對(duì)應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似。判定定理3:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似。簡(jiǎn)述為:三邊對(duì)應(yīng)成比例,兩三角形相似。引理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個(gè)直角三角形有一個(gè)銳角對(duì)應(yīng)相等,那么它們相似;(2)如果兩個(gè)直角三角形的兩條直角邊對(duì)應(yīng)成比例,那么它們相似。定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)三角形的斜邊和直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。相似三角形的性質(zhì):(1)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比和對(duì)應(yīng)平分線的比都等于相似比;(2)相似三角形周長(zhǎng)的比等于相似比;(3)相似三角形面積的比等于相似比的平方。相似三角形外接圓的直徑比、周長(zhǎng)比等于相似比,外接圓的面積比等于相似比的平方。直角三角形的射影定理射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們?cè)谛边吷仙溆芭c斜邊的比例中項(xiàng)。圓周定理圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧相等。推論2:半圓(或直徑)所對(duì)的圓周角是直角;90176。的圓周角所對(duì)的弦是直徑。圓內(nèi)接四邊形的性質(zhì)與判定定理定理1:圓的內(nèi)接四邊形的對(duì)角互補(bǔ)。定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對(duì)角。圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。圓的切線的性質(zhì)及判定定理切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。推論1:經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)。推論2:經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。弦切角的性質(zhì)弦切角定理:弦切角等于它所夾的弧所對(duì)的圓周角。與圓有關(guān)的比例線段相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。高中數(shù)學(xué)選修44知識(shí)點(diǎn)總結(jié)1.伸縮變換:設(shè)點(diǎn)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換的作用下,點(diǎn)對(duì)應(yīng)到點(diǎn),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換。:在平面內(nèi)取一個(gè)定點(diǎn),叫做極點(diǎn);自極點(diǎn)引一條射線叫做極軸;再選定一個(gè)長(zhǎng)度單位、一個(gè)角度單位(通常取弧度)及其正方向(通常取逆時(shí)針?lè)较?,這樣就建立了一個(gè)極坐標(biāo)系。3.點(diǎn)的極坐標(biāo):設(shè)是平面內(nèi)一點(diǎn),極點(diǎn)與點(diǎn)的距離叫做點(diǎn)的極徑,記為;以極軸為始邊,射線為終邊的叫做點(diǎn)的極角,記為。有序數(shù)對(duì)叫做點(diǎn)的極坐標(biāo),記為. 極坐標(biāo)與表示同一個(gè)點(diǎn)。極點(diǎn)的坐標(biāo)為.,則,規(guī)定點(diǎn)與點(diǎn)關(guān)于極點(diǎn)對(duì)稱,即與表示同一點(diǎn)。如果規(guī)定,那么除極點(diǎn)外,平面內(nèi)的點(diǎn)可用唯一的極坐標(biāo)表示;同時(shí),極坐標(biāo)表示的點(diǎn)也是唯一確定的。 5.極坐標(biāo)與直角坐標(biāo)的互化:6。圓的極坐標(biāo)方程:在極坐標(biāo)系中,以極點(diǎn)為圓心,為半徑的圓的極坐標(biāo)方程是 ; 在極坐標(biāo)系中,以 為圓心, 為半徑的圓的極坐標(biāo)方程是 ;在極坐標(biāo)系中,以 為圓心,為半徑的圓的極坐標(biāo)方程是;,表示以極點(diǎn)為起點(diǎn)的一條射線;,過(guò)點(diǎn),且垂直于極軸的直線l的極坐標(biāo)方程是.8.參數(shù)方程的概念:在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)都是某個(gè)變數(shù)的函數(shù) 并且對(duì)于的每一個(gè)允許值,由這個(gè)方程所確定的點(diǎn)都在這條曲線上,那么這個(gè)方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)的變數(shù)叫做參變數(shù),簡(jiǎn)稱參數(shù)。相對(duì)于參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程。9.圓的參數(shù)方程可表示為. 橢圓的參數(shù)方程可表示為. ,傾斜角為的直線的參數(shù)方程可表示為(為參數(shù)).10.在建立曲線的參數(shù)方程時(shí),要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使的取值范圍保持一致.
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1