【總結(jié)】正弦定理、余弦定理的綜合應(yīng)用正余弦定理的應(yīng)用1、(1)在△ABC中,已知a,b,c分別為內(nèi)角A,B,C的對邊,若b=2a,B=A+600,則A=______(2)在△ABC中,若B=300,AB=32,AC=
2025-08-11 12:29
【總結(jié)】......正弦定理、余弦定理練習(xí)題年級__________班級_________學(xué)號_________姓名__________分數(shù)____一、選擇題(共20題,題分合計100分)△ABC中,sinA
2025-03-25 04:59
2024-11-09 13:04
2025-08-16 02:23
【總結(jié)】正玄定理與余弦定理的運用【熱點題型】題型一考查測量距離例1、如圖所示,有兩座建筑物AB和CD都在河的對岸(不知道它們的高度,且不能到達對岸),某人想測量兩座建筑物尖頂A、C之間的距離,但只有卷尺和測量儀兩種工具.若此人在地面上選一條基線EF,用卷尺測得EF的長度為a,并用測角儀測量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC=、C之間距離的步
2025-08-23 05:54
【總結(jié)】正弦定理和余弦定理一、題型歸納利用正余弦定理解三角形【例1】在△ABC中,已知=,=,B=45°,求A、C和.【例2】設(shè)的內(nèi)角A、B、C的對邊長分別為、、,且3+3-3=4.(Ⅰ)求sinA的值;(Ⅱ)求的值.【練習(xí)1】(2011·北京)在△ABC中,若b=5,∠B=,tanA=2,則
2025-03-25 03:44
【總結(jié)】正弦定理及其變形RCcBbAa2sinsinsin???邊角分離ARasin2?BRbsin2?CRcsin2?AbcBacCabSABCsin21sin21sin21????BAbatantan22?
2025-08-16 01:16
2025-08-04 16:35
【總結(jié)】正弦定理、余弦定理基礎(chǔ)練習(xí) 1.在△ABC中: ?。?)已知、、,求b; ?。?)已知、、,求. 2.在△ABC中(角度精確到1°): (1)已知、c=7、B=60°,求C; ?。?)已知、b=7、A=50°,求B. 3.在△ABC中(結(jié)果保留兩個有效數(shù)字): (1)已知a=5、b=7、C=120°,求
2025-06-25 03:15
【總結(jié)】高一(下)數(shù)學(xué)(必修五)第一章解三角形正弦定理、余弦定理高考真題1、(06湖北卷)若的內(nèi)角滿足,則A.B.C.D.解:由sin2A=2sinAcosA0,可知A這銳角,所以sinA+cosA0,又,故選A2、(06安徽卷)如果的三個內(nèi)角的余弦值分別等于的三個內(nèi)角的正弦值,則A.和都
2025-04-17 04:29
【總結(jié)】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
2024-12-05 10:14
【總結(jié)】數(shù)學(xué)資料遠大教育全方位個性化教育發(fā)展中心ZhongshanYuanDaEducationCenter課題:§1.1.1正弦定理授課類型:新授課●教學(xué)目標(biāo)知識與技能:通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題。過程與方法:讓學(xué)生從已有的幾何知
2025-08-04 10:22
2025-08-16 01:47
【總結(jié)】天津職業(yè)技術(shù)師范大學(xué)人教A版數(shù)學(xué)必修5理學(xué)院數(shù)學(xué)0701田承恩一、教材分析本課是人教A版數(shù)學(xué)必修5第一章。因為在本節(jié)課前,同學(xué)們已經(jīng)學(xué)習(xí)了正弦定理、余弦定理的公式及基本應(yīng)用。本節(jié)課的設(shè)計,意在復(fù)習(xí)前面所學(xué)兩個定理的同時,加深對其的了解,以便能達到在實際問題中熟練應(yīng)用的效果。同學(xué)們在學(xué)習(xí)時可以考慮,題中為什么要給出這些已知條件,而
2025-04-30 02:52
2025-06-28 05:22