【正文】
色體。每次選擇一條染色體,直到獲得條染色體為止。 混合智能算法結(jié)合隨機(jī)模擬方法和遺傳算法相結(jié)合的混合智能算法[6]一般步驟:。我們利用基于序的評(píng)價(jià)函數(shù)為其中,假設(shè)染色體己經(jīng)根據(jù)他們的目標(biāo)函數(shù)值從好到壞排列好,為遺傳算法中的參數(shù)。五、小結(jié)本文介紹了一種不確定條件下最短路徑問題解決方法,對(duì)不確定條件下最短路徑問題,根據(jù)不同的決策要求,建立有約束的期望最短路徑模型,由于模型中包括不確定參數(shù),因此,不能利用傳統(tǒng)的方法來求解,本文介紹一種結(jié)合隨機(jī)模擬方法和遺傳算法的混合智能算法來進(jìn)行求解,該算法利用隨機(jī)模擬方法計(jì)算最短路徑問題的不確定函數(shù),將期望最短路徑模型轉(zhuǎn)化為等價(jià)的確定性優(yōu)化模型,然后利用遺傳算法搜索滿足約束條件的最優(yōu)路徑。參考文獻(xiàn)[1] Dubois D, Prade H. Fuzzy Sets and Systems: Theory and Applications. New York: Academic Press, 1980[2] Dubois D, Prade H. Systems of linear fuzzy constraints. Fuzzy Sets and Systems 1980, 3: 378[3] Holland J. Adaptatin in Natural and Artificial System. University of Michigan Press, Ann Arbor, MI, 1975[4] Gen M, Cheng R. Genetic Algorithms and Engineer Optimization. New York: John Wiley and Sons, 2000[5] Hsinghua C, Premkumar G, Chu C. Genetic algorithms for muications network designan empirical study of the factors that influence performance. IEEE Trans. on Evol. Comput, 2001 5(3): 236249[6] Xiaoyu Ji, Models and Algorithm for Stochastic Shortest Path Problem, Applied Mathematics and Computation, 2005 170(1): 503514 (SCI)