【總結(jié)】二次函數(shù)應(yīng)用題1、某體育用品商店購進一批滑板,每件進價為100元,售價為130元,,根據(jù)市場調(diào)查,每降價5元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?2、某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,:這種
2025-06-23 21:59
【總結(jié)】二次函數(shù)應(yīng)用題1、某體育用品商店購進一批滑板,每件進價為100元,售價為130元,,根據(jù)市場調(diào)查,每降價5元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?2、某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為
2025-06-19 07:56
【總結(jié)】二次函數(shù)經(jīng)典應(yīng)用題“8”道1、某體育用品商店購進一批滑板,每件進價為100元,售價為130元,,根據(jù)市場調(diào)查,每降價5元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?2、某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為
2025-03-24 12:31
【總結(jié)】第一篇:二次函數(shù)利潤應(yīng)用教學(xué)設(shè)計 二次函數(shù)與實際問題 利潤的最大化問題——教學(xué)設(shè)計 教學(xué)目標(biāo): 1、探究實際問題與二次函數(shù)的關(guān)系 2、讓學(xué)生掌握用二次函數(shù)最值的性質(zhì)解決最大值問題的方法 3...
2025-10-12 21:01
【總結(jié)】二次函數(shù)應(yīng)用題分類解析二次函數(shù)是初中學(xué)段的難點,學(xué)生學(xué)起來覺的比較的吃力,可以把應(yīng)用問題進行分類:第一類:利用待定系數(shù)法對于題目明確給出兩個變量間是二次函數(shù)關(guān)系,并且給出幾對變量值,要求求出函數(shù)關(guān)系式,并進行簡單的應(yīng)用。解答的關(guān)鍵是熟練運用待定系數(shù)法,準(zhǔn)確求出函數(shù)關(guān)系式。例1.某公司生產(chǎn)的A種產(chǎn)品,它的成本是2元,售價是3元,年銷售量為100萬件,為了獲得更好的效益,公司準(zhǔn)備拿
2025-03-24 06:26
【總結(jié)】利潤最大問題利潤問題一.幾個量之間的關(guān)系.、售價、進價的關(guān)系:利潤=售價-進價、單價、數(shù)量的關(guān)系:總價=單價×數(shù)量、單件利潤、數(shù)量的關(guān)系:總利潤=單件利潤×數(shù)量二.在商品銷售中,采用哪些方法增加利潤?問題40元,售價是每件60元,每星期可賣出300件。
2025-04-29 06:14
【總結(jié)】 個性化學(xué)案二次函數(shù)綜合應(yīng)用題(拱橋問題)適用學(xué)科數(shù)學(xué)適用年級初中三年級適用區(qū)域全國課時時長(分鐘)60知識點二次函數(shù)解析式的確定、二次函數(shù)的性質(zhì)和應(yīng)用教學(xué)目標(biāo)。2學(xué)會用二次函數(shù)知識解決實際問題,掌握數(shù)學(xué)建模的思想,進一步熟悉,點坐標(biāo)和線段之間的轉(zhuǎn)化。,體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,感受數(shù)學(xué)的應(yīng)用價值。教學(xué)重點,并能理解
【總結(jié)】二次函數(shù)訓(xùn)練提高習(xí)題1.,劉星同學(xué)觀察得出了下面四條信息:(1)>0;(2)c>1;(3)2a-b<0;(4)a+b+c<()A.2個B.3個C.4個D.1個2.在同一坐標(biāo)系中,一次函數(shù)與二次函數(shù)的圖像可能是()3..拋物線y=-(x+2)2-3的頂點坐標(biāo)是().(A)
2025-06-27 16:35
【總結(jié)】二次函數(shù)的應(yīng)用——銷售問題知識回顧:1.拋物線的頂點坐標(biāo)是,當(dāng)=時,有最值為。2.拋物線的頂點坐標(biāo)是,當(dāng)=時,有最值為。3.拋物線的頂點坐標(biāo)是,當(dāng)=時,有最值為。售價(元/千克)506070銷售量y(千克)1008060?
2025-03-26 05:01
【總結(jié)】二次函數(shù)求最大利潤問題的教學(xué)設(shè)計范亞書 一、學(xué)生知識狀況分析 學(xué)生的知識技能基礎(chǔ):由簡單的二次函數(shù)y=x2開始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,學(xué)生已經(jīng)掌握了二次函數(shù)的三種表示方式和性質(zhì)。 學(xué)生的活動經(jīng)驗基礎(chǔ):在前面對二次函數(shù)的研究中,學(xué)生研究了二次函數(shù)的圖象和性質(zhì),掌握了研究二次函數(shù)常用的方法?! ?/span>
【總結(jié)】二次函數(shù)運用題一:知識點利潤問題:總利潤=總售價–總成本總利潤=每件商品的利潤×銷售數(shù)量二:例題講解1、(2009年內(nèi)蒙古包頭)將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長各做成一個正方形,則這兩個正方形面積之和的最小值是cm2.2、(2010年聊城冠縣實驗中學(xué)二模)某商品原價289元,經(jīng)連續(xù)兩次降價
2025-03-25 07:11
【總結(jié)】利潤問題1.關(guān)鍵提示成本:我們購買一件產(chǎn)品的買入價叫做件商品的成本,商品的成本一般是一個不變的量,比如商家進了一批杯子,進貨價是?10?元/個,這就是商品的成本。一般而言求成本是利潤問題的關(guān)鍵和核心。2.關(guān)鍵詞解析銷售價(賣出價):當(dāng)我們進入某種產(chǎn)品后,又以某個價格賣掉這種產(chǎn)品,這個價格就叫做銷售價或叫賣出價,這個量是一個經(jīng)常變化的量,我們經(jīng)常所
2025-03-26 03:11
【總結(jié)】二次函數(shù)應(yīng)用②1.心理學(xué)家發(fā)現(xiàn),學(xué)生對概念的接受能力y和提出概念所用的時間x(單位:分)之間大體滿足函數(shù)關(guān)系式:(0≤x≤30)。y的值越大,表示接受能力越強。試根據(jù)關(guān)系式回答:(1)若提出概念用10分鐘,學(xué)生的接受能力是多少?(2)概念提出多少時間時?學(xué)生的接受能力達到最強?2.某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個
2025-07-26 03:42
【總結(jié)】實際問題與二次函數(shù)—知識講解(提高)【學(xué)習(xí)目標(biāo)】,培養(yǎng)分析問題、解決問題的能力和應(yīng)用數(shù)學(xué)的意識.,深刻理解二次函數(shù)是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型.【要點梳理】要點一、列二次函數(shù)解應(yīng)用題 列二次函數(shù)解應(yīng)用題與列整式方程解應(yīng)用題的思路和方法是一致的,不同的是,學(xué)習(xí)了二次函數(shù)后,表示量與量的關(guān)系的代數(shù)式是含有兩個變量的等式.對于應(yīng)用題要注意以下步驟:
2025-06-24 04:19
【總結(jié)】函數(shù)綜合應(yīng)用題題目分析及題目對學(xué)生的要求1.求解析式:要求學(xué)生能夠根據(jù)題意建立相應(yīng)坐標(biāo)系,將實際問題轉(zhuǎn)化成數(shù)學(xué)問題。需要注意的是:(1)不能忘記寫自變量的取值范圍(2)在考慮自變量的取值范圍時要結(jié)合它所代表的實際意義。2.求最值:實際生活中的最值能夠指導(dǎo)人們進行決策,這一問要求學(xué)生能夠熟練地對二次三項式進行配方,利用解析式探討實際問題中的最值問題。最值的求
2025-06-24 06:00