【總結】à300450600sinacosatana1cota12223332223213333211、2、在直角三角形中,由已知元素求未知元素的過程叫:解直角三角形(1)三邊之間的關系:a2+b2=c2(勾股定理);解直角三
2024-11-24 13:26
【總結】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現(xiàn)有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2024-11-24 17:04
【總結】4解直角三角形第1課時解直角三角形第一章直角三角形的邊角關系提示:點擊進入習題答案顯示67892CCD10B1234見習題見習題見習題D5B11121314見習題見習題見習題見習題1.在直角三角形中,除直角外,共有______個元素,即
2024-12-28 05:55
【總結】(3)如圖,在進行測量時,從下向上看,視線與水平線的夾角叫做仰角;從上往下看,視線與水平線的夾角叫做俯角.練習1如圖,為了測量電線桿的高度AB,在離電線桿C處,用高儀CD測得電線桿頂端B的仰角a=22°,
2024-11-10 13:07
【總結】第一章直角三角形的邊角關系解直角三角形1課堂講解?解直角三角形2課時流程逐點導講練課堂小結作業(yè)提升(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系(1)三邊之間的關系222cba??
2024-12-28 02:38
【總結】解直角三角形高密市城南中學李宗洲(說課案例)標注點擊每頁幻燈片的圖標,則幻燈片翻頁一教材分析單元知識內(nèi)容:1直角三角形的邊角關系.2應用勾股定理、Rt△的兩銳角互余及銳角三角函數(shù)解直角三角形.3應用解直角三角形的有關知識解決一些簡單的實際問題(包括
2024-11-10 12:43
【總結】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2024-11-10 01:51
【總結】解直角三角形選擇題1、(2020蘇州二模)如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上,已知?=36°,求長方形卡片的周長.(精確到1mm,參考數(shù)據(jù):sin36,cos36,tan36??????)
2024-11-16 03:22
【總結】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-21 00:14
【總結】解直角三角形的說課稿 各位領導老師同學們,大家下午好! 我說課的的題目是解直角三角形,它是第二十五章第三節(jié)內(nèi)容,我從下面五個方面說課。 第一方面:教材分析 1、本節(jié)的地位作用 《解直角三角形...
2024-12-04 22:53
【總結】精品資源《解直角三角形》基礎測試一填空題(每小題6分,共18分):1.在Rt△ABC中,∠C=90°,a=2,b=3,則cosA= ,sinB= ,tanB= ,cotB= ??;2.直角三角形ABC的面積為24cm2,直角邊AB為6cm,∠A是銳角,則sinA= ??;3.等腰三角形底邊長10cm,周長為36cm,則一底角的余切值為 .
2025-03-25 07:47
【總結】“啟發(fā)”輔導中心專用資料九(下)數(shù)學輔導---------解直角三角形21、計算:(1)(2)(3)cos30°+sin45°(4)6tan230°-sin60°-2sin45°
2025-08-17 07:43
【總結】第一篇:初中數(shù)學解直角三角形測試題 試題寶典 教學資源,完全免費,天天更新! 初中數(shù)學解直角三角形測試題 :(每小題2分,共20分) △EFG中,∠G=90°,EG=6,EF=10,則cot...
2025-10-05 01:11
【總結】第25章?解直角三角形復習第25章?解直角三角形復習二.重點、難點:?1.重點:???(1)探索直角三角形中銳角三角函數(shù)值與三邊之間的關系.掌握三角函數(shù)定義式:sinA=,cosA=,tanA=,cotA=.???(2)掌握30°、45°、60&
2025-06-07 22:10
【總結】解直角三角形一.選擇題1、(2022蘇州二模)如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上,已知?=36°,求長方形卡片的周長.(精確到1mm,參考數(shù)據(jù):sin36,cos36,tan36??????)
2025-01-11 02:44