【正文】
(4), : 297–323. [31]R. Thaler, Mental accounting and consumer choice, Mark. Sci. 1985, 4 (3), : 199– 214. [32]. Cox, . Rich, Perceived risk and consumer decisionmaking: the case of telephone shopping, J. Mark. Res. 1964, 1 (4),: 32–39. [33]. Whitman, . Mattord, Principles of Information Security, 3rd edition, Course Technology, Boston, MA, 2021. [34]W. Hong, . Thong, Inter privacy concerns: an integrated conceptualization and four empirical studies, MIS Q. 2021, 37 (1), : 275–298. [35]. Tsai, S. Egelman, L. Cranor, A. Acquisti, The effect of online privacy information on purchase behavior: an experimental study, Inf. Syst. Res. 2021, 22 (2),: 254– 268. [36]A. Bhatnagar, S. Misra, . Rao, On risk, convenience, and Inter shopping behavior, Commun. ACM 2021, 43 (11), : 98–105. [37]. Murray, G. Ha168。ubl, Explaining cognitive lockin: the role of skillbased habits of use in consumer choice, J. Consumer Res. 2021, 34 (1), :77–88. [38]G. Zauberman, The intertemporal dynamics of consumer lockin, J. Consumer Res. 2021,30 (1), : 405–419. [39]G. Debreu, Topological methods in cardinal utility theory, in: S. Kalin, . Arrow, P Suppes (Eds.), Mathematical Methods in the Social Sciences, Stanford University Press, Palo Alto, CA, 1960, : 16–26. [40]. Luce, . Tukey, Simultaneous conjoint measurement: a new type of fundamental measurement, J. Math. Psychol. 1964, 1 (1), :.1–27. [41]. Helander, J. Jiao, Research on eproduct development (ePD) for mass customization, Technovation 2021, 22 (11), : 717–724. [42]V. M. Mitchell, Consumer perceived risk: conceptualisations and models, Eur. J. Mark. 1999, 33 (1–2),: 163–195. [43]D. Bakken, . Frazier, Conjoint analysis: understanding consumer decisionmaking, in: R. Grover, M. Vriens (Eds.), The Handbook of Marketing Research: Uses, Misuses, and Future Advances, (2021), Sage Publications, Inc., Thousand Oaks, CA, 2021, :. 288–311. [44]. Green, . Rao, Conjoint measurement for quantifying judgmental data, J. Mark. Res. 1971, 8 (3),:355–363. [45]. Johnson, Adaptive conjoint analysis, in: Proceedings of the Sawtooth Software Conference on Perceptual Mapping, Conjoint Analysis, and Computer Interviewing, Sawtooth Software Inc., Orem, UT, 1987, pp. 253–265. [46]. Louviere, . Woodworth, Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data, J. Mark. Res. 1983,20 (4), : 350–367. [47]A. Schwarz, B. Jayatilaka, R. Hirschheim, T. Goles, A conjoint approach to understanding IT application services outsourcing, J. Assoc. Inf. Syst. 2021, 10 (10), : 748–781. [48]A. Bajaj, A study of senior information systems managers’ decision models in adopting new puting architectures, J. Assoc. Inf. Syst. 2021, 1 (4),: 1–56. [49]L. BakerEveleth, . Stone, Expectancy theory and behavioral intentions to use puter applications, Interdiscip. J. Inf. Knowl. Manag. 2021, : 3, 35–146. [50]S. Addelman, Orthogonal maineffect plans for asymmetrical factorial experiments, Technometrics 1962, 4 (1),: 21–46. [51]. Steckel, . DeSarbo, V. Mahajan, On the creation of acceptable conjoint analysis experimental designs, Decis. Sci. 1991, 22 (2), : 435–442. [52]R. Agarwal, J. Prasad, Are individual differences germane to the acceptance of new information technology? Decis. Sci. 1999, 30 (2), : 361–391. [53]. Franek, Women and puting, Commun. ACM 1990, 33 (11), :34–45. [54]D. Gefen, . Straub, Gender differences in the perception and use of Email: an extension to the technology acceptance model, MIS Q. 1997, 21 (4),: 389–400. [55]V. Venkatesh, . Morris, . Ackerman, A longitudinal field investigation of gender differences in individual technology adoption decisionmaking processes, Organ. Behav. Hum. Decis. Process 2021,83 (1), : 33–60. [56]V. Venkatesh, . Morris, . Davis, . Davis, User acceptance of information technology: towards a unified view, MIS , 27 (3), : 425–478. [61]H. FehrDuda, M. de Gennaro, R. Schubert, Gender, financial risk, and probability weights, Theory Decis. 2021,60 (2–3), : 283–313. [62]. Holbrook, Beyond attitude structure, J. Mark. Res. 1978, :15 (4), 546–556. [69] . Darley, . Smith, Gender differences in information processing strategies: an empirical test of the selective model in advertising response, J. Advert. 1995,25 (1), : 41–56. [70]. Dulebohn, An investigation of the determinants of investment risk behavior in employersponsored retirement plan, J. Manag. 2021,28 (1),: 3–26. [71]. Rao, Theory and design of conjoint studies (Ratings based methods), Applied Conjoint Analysis, Springer, Berlin, Germany, 2021 37–78: (Chapter 2). [72]. Murphy, B. Myors, A. Wolach, Statistical Power Analysis, 3rd edition, Routledge, New York, NY, 2021. [73]Y. H. Chen, . Hsu, . Lin, Website attributes that increase consumer purchase intention: a conjoint analysis, J. Bus. Res. 2021, : 63 (9–10), 1007–1014. [74]. Harrison, A. O168。 zayan, . Meyers, A conjoint analysis of new food products processed from underutilized small crawfish, J. Agric. Appl. Econ. 1998, 30 (2), : 257–265. [75]. Bass, . Tigert, . Lonsdale, Market segmentation: group versus individual behavior, J. Mark. Res. 1968, 5 (3), : 264–270. [76]. Carte, . Russell, In pursuit of moderation: nine mon errors and their solutions, MIS Q. 2021, 27 (3), : 479–501. [77]. Kolodinsky, . Hogarth, . Hilgert, The adoption of electronic banking technologies by US consumers, Int. J. Bank Mark. 2021, 22 (4),: 238–259. [78]R. Furlan, R. Corradetti, An empirical parison of conjoint analysis model on a same sample, Stat. Appl. 2021, 17 (2),: 141–158. [79]. Vavra, . Green, . Krieger, Evaluating EZ pass: using conjoint analysis to assess consumer response to a new tollway technology, Mark. Res.