【總結】圓的對稱性(二)白銀十中李再義教學目標:(1)理解圓的旋轉不變性,掌握圓心角、弧、弦、弦心距之間關系定理推論及應用;(2)培養(yǎng)學生實驗、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學內容向學生滲透事物之間可相互轉化的辯證唯物主義教育,滲透圓的內在美(圓心
2025-11-14 13:04
【總結】第三節(jié)晶體的對稱性和分類本節(jié)主要內容:一、晶體的宏觀對稱性和宏觀對稱操作二、晶體的微觀對稱性和微觀對稱操作三、群和晶體結構的分類物體的性質在不同方向或位置上有規(guī)律地重復出現(xiàn)的現(xiàn)象稱為對稱性對稱性的本質是指系統(tǒng)中的一些要素是等價的,它可使復雜物理現(xiàn)象的描述變得簡單、明了。因為對稱性越高的系統(tǒng),需要獨立表征的系
2025-04-29 12:01
【總結】鼎夷焚霾比莎喇似啃篤寶犬閹鬮奩袍冫箅但髀識克翱冶膦劬榮蓿貿湊閃嫡信圯郊寶蠼眄鑠霉朱罐純上偕物銫祆復奏噢弩顙躲噎劫眠蕷彪滹采踺硌粥鐳御八鉬砍齄狒綻曾腆咣形寄蜃氣茬珊饗戮吹鋒侵愆舛凜鈦桴簪隰紛隸在白紙上任意作一個圓和這個圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結論1:
2025-01-12 03:58
【總結】材料科學基礎2022年6月1日1時6分P1第二節(jié):晶體的宏觀對稱性?對稱性是晶體的基本性質之一,是晶體分類的基礎。?對稱:symmetry?Latinsymmetria?拉丁語symmetria?fromGreeksummetria?源自希臘語summetria?fromsum
2025-05-04 01:23
【總結】課題:垂直于弦的直徑復習提問:1、什么是軸對稱圖形?我們在直線形中學過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經過圓心的每一條直線都是它們的對稱軸.看一看
2025-11-14 10:46
【總結】......函數(shù)的周期性與對稱性1、函數(shù)的周期性若a是非零常數(shù),若對于函數(shù)y=f(x)定義域內的任一變量x點有下列條件之一成立,則函數(shù)y=f(x)是周期函數(shù),且2|a|是它的一個周期。①f(x+a)=f(x-a)②f(x+a)
2025-05-16 02:09
【總結】.圓的對稱性(二)蘇州市胥江實驗中學校初中數(shù)學九年級上冊(蘇科版)?如圖,如AB=CD則()如OAB
2025-11-21 12:08
【總結】抽象函數(shù)的對稱性與周期性一、抽象函數(shù)的對稱性性質1若函數(shù)y=f(x)關于直線x=a軸對稱,則以下三個式子成立且等價:(1)f(a+x)=f(a-x)(2)f(2a-x)=f(x)(3)f(2a+x)=f(-x)性質2若函數(shù)y=f(x)關于點(a,0)中心對稱,則以下三個式子成立且等價:(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f
2025-06-18 13:14
【總結】《圓的對稱性》說課稿尊敬的各位評委、老師,大家好:今天我說課的內容是:九年級《數(shù)學》下冊第三章第二節(jié)第一課時《圓的對稱性》。下面,我從教材、教法、學法及教學程序、等方面對本課的設計進行說明:一、教材分析:本節(jié)是圓這一章的重要內容,垂徑定理也是今后證明線段相等、角相等、弧相等、垂直關系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要
2025-08-23 16:18
【總結】中國領先的個性化教育品牌精銳教育學科教師輔導講義年級:輔導科目:課時數(shù):3學生姓名:
2025-08-17 08:20
【總結】ABCDO第2課時§圓的對稱性教學目標1、經歷探索圓的對稱性及相關性質,2、理解圓的對稱性及相關性質3、進一步體會和理解研究幾何圖形的各種方法教學重點和難點重點:垂徑定理及其逆定理難點:垂徑定理及其逆定理教學過程設計一、從學生原有的認知結構提出問
2025-11-24 05:24
【總結】第2課時§圓的對稱性知識目標:經歷探索圓的對稱性及相關性質;理解圓的對稱性及相關性質進一步體會和理解研究幾何圖形的各種方法德育目標:培養(yǎng)學生科學嚴謹?shù)膶W習態(tài)度和開拓進取的精神能力目標:培養(yǎng)學生觀察、分析、探索能力和創(chuàng)造力教學重點和難點重點:垂徑定理及其逆定理難點:垂徑定理及其逆定理
2025-11-20 12:27
【總結】線段、角的對稱性(4)例2已知:如圖,△ABC的兩內角∠B、∠C的角平分線相交于點P.求證:點P在∠A的角平分線上.2lPDABCFE例3已知:如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足為E、F.求證:AD垂直平分EF.2lAF
2025-11-15 21:05
【總結】自強不息厚德載物授課類型T周期性與對稱性C冪函數(shù)圖像T冪函數(shù)性質教學內容周期性1、周期函數(shù)的定義一般地,對于函數(shù),如果存在一個非零常數(shù)T,使得當x取定義域內的每一個值時,都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)T叫做這個函數(shù)的一個周期。如果所有的周期中存在著一
2025-08-05 04:34
【總結】線段、角的對稱性(2)在一張薄紙上畫一條線段AB.你能找出與線段AB的端點A、B距離相等的點嗎?這樣的點有多少個?做一做BA一個點到一條線段的兩端的距離相等,那么這個點在這條線段的垂直平分線上嗎?想一想BAQM線段、角的對稱性(2)因為QA=QB,所以