【總結】 向量數(shù)乘運算及其幾何意義 學習目標 核心素養(yǎng) .(重點) ,會進行向量的數(shù)乘運算.(重點) ,并能熟練地運用這些知識處理有關向量共線問題.(難點) .(易混點) ,發(fā)展學生數(shù)學...
2025-04-03 04:15
【總結】【優(yōu)化指導】2021年高中數(shù)學向量減法運算及其幾何意義學業(yè)達標測試新人教A版必修41.設b是a的相反向量,則下列說法錯誤的是()A.a(chǎn)與b的長度必相等B.a(chǎn)∥bC.a(chǎn)與b一定不相等D.a(chǎn)是b的相反向量解析:根據(jù)相反向量的定義可知,C錯誤,因為0與0互為相反向量,但0與0相等.
2024-12-09 03:43
【總結】【優(yōu)化指導】2021年高中數(shù)學向量加法運算及其幾何意義學業(yè)達標測試新人教A版必修41.在平行四邊形ABCD中,AB→+CA→+BD→等于()→→→→解析:原式=CA→+AB→+BD→=CD→.答案:D2.若C是線段AB的中點,則AC→+BC→=()
【總結】向量數(shù)乘運算及其幾何意義加法三角形法則:a?Ab?BCba???a?a?Ab?Bb?OCba???首尾相連,始到終共起點,對角線babBaABAab??O共起點,后到前加法平行四邊形法則:減法三角形法則:已知非零向量
2025-06-06 01:39
【總結】第一篇:高中數(shù)學向量的數(shù)乘教案新人教A版必修1 江蘇省連云港灌云縣第一中學高中數(shù)學向量的數(shù)乘教案新 人教A版必修1 教學目標: 1.理解向量數(shù)乘的含義及向量數(shù)乘的運算律; 2.培養(yǎng)學生在學習...
2025-10-19 16:29
【總結】算及其幾何意義:a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接首尾連特點:起點相同終點連babBaABAab??::O特點:共起點,連終點,指被減思考:已知非零向量,
2025-07-18 10:05
【總結】太谷(金谷)中學高一數(shù)學導學案學習目標:1.掌握向量數(shù)乘的定義,理解向量數(shù)乘的幾何意義;2.掌握向量數(shù)乘的運算律;3.理解兩個向量共線的充要條件,能夠運用兩向量共線的條件判定兩向量是否平行.教學重點:理解向量數(shù)乘的幾何意義.教學重點:向量共線的充要條件及其應用.教學過程情景平臺a已知非零向量a,把a+a+a記作3a,(-a)+(-a)+(-a)記作-3a,
2025-06-19 07:13
【總結】第一篇:高中數(shù)學新人教A版必修1 §2.2.2向量減法運算及其幾何意義 教學目標1.通過探究活動,使學生掌握向量減法概念,理解兩個向量的減法就是轉化為加法來進行,掌握相反向量. 2.啟發(fā)學生能夠...
2025-10-31 12:32
【總結】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.1向量加法運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十二分。...
2025-10-13 18:48
【總結】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.2向量減法運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十二分。...
【總結】向量數(shù)乘運算及其幾何意義加法三角形法則:a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾順次連,起點指終點特點:起點相同,對角為和babBaABAab??O特點:平移同起點,方向指被減加法平行四邊形法則:
2025-01-19 10:27
【總結】問題:一條細繩橫貫東西,一只螞蟻在細繩上做勻速直線運動,若螞蟻向東方向一秒鐘的位移對應的向量為,那么它在同一方向上秒
2025-10-31 09:21
【總結】§2.向量的加法及其幾何意義【學習目標、細解考綱】1通過實際例子,掌握向量的加法運算,并理解向量加法的平行四邊形法則和三角形法則則其幾何意義。2靈活運用平行四邊形法則和三角形法則進行向量求和運算。3通過本節(jié)學習,培養(yǎng)多角度思考問題的習慣,提高探索問題的能力?!局R梳理、雙基再現(xiàn)】1、向量加法的三角形法則:
2025-11-21 13:46
【總結】§3.空間向量的數(shù)乘運算知識點一空間向量的運算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設M是底面ABCD的中心,N是側面BCC′B′對角線BC′上的34分點,設'MNABADAA???
2024-12-08 01:49
【總結】數(shù)乘運算上一節(jié)課,我們把平面向量的有關概念及加減運算擴展到了空間.平面向量空間向量加法減法運算加法:三角形法則或平行四邊形法則減法:三角形法則運算律加法交換律abba???加法結合律:()()ab
2025-11-09 12:14