【總結(jié)】 專題04立體幾何 1.設(shè)α,β為兩個平面,則α∥β的充要條件是 A.α內(nèi)有無數(shù)條直線與β平行 B.α內(nèi)有兩條相交直線與β平行 C.α,β平行于同一條直線 D.α,β垂直于同一平面 ...
2025-04-03 00:20
【總結(jié)】平面向量的數(shù)量積如果一個物體在力F作用下產(chǎn)生位移S,那么F所做的功為:θ表示力F的方向與位移S的方向的夾角。位移SOA問題情境θFFθSW=│F││S│COSθ平面向量的數(shù)量積學(xué)習(xí)目標:1、掌握平面向量的數(shù)量積的定義及幾何意義2、掌握平面向量數(shù)量積的性質(zhì)下面請
2024-11-18 15:26
【總結(jié)】精品資源必修《向量》復(fù)習(xí)一、選擇題1、設(shè),,且∥,則銳角為()A、B、C、D、2、已知,,,則與的夾角是()A、150B、120C、60D、303、下列命題正確的個數(shù)是()①;②;③;④A、1
2025-04-16 23:06
【總結(jié)】 邏輯聯(lián)結(jié)詞“且”單元測試 一,選擇題: “方程|x|=1的解是x=±1”中,使用邏輯聯(lián)結(jié)詞的情況是( ). “或” “且”“非” ( ?。? ,命題“p且q”一定是真命題 “p且q”...
2025-04-03 03:23
【總結(jié)】 橢圓的簡單性質(zhì)單元測試 一、選擇題 1.下列命題是真命題的是 () A.到兩定點距離之和為常數(shù)的點的軌跡是橢圓 B.到定直線和定點F(c,0)的距離之比為的點的軌跡是橢圓 C....
2025-04-05 05:49
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.3平面向量的基本定理及坐標表示2.3.1平面向量基本定理,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分...
2025-10-13 18:48
【總結(jié)】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
2025-03-25 01:23
【總結(jié)】Unit6單元測試卷一、寫出一個同類的單詞。1.coconutcherry_______________2.theywe_______________3.buywork_______________4.watermilk_______________5.cherrieslychees_
2024-11-28 14:17
【總結(jié)】概念、方法、題型、易誤點及應(yīng)試技巧總結(jié)平面向量一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平秱)。如:已知A(1,2),B(4,2),則把向量AB按向量a=(-1,3)平移后得到的向量是_____(答
2025-10-17 20:51
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)新人教A版必修41.如果一架飛機向東飛行200km,再向南飛行300km,記飛機飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2021+300
2024-12-08 13:12
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量的正交分解及坐標表示平面向量的坐標運算學(xué)業(yè)達標測試新人教A版必修41.下列說法正確的有()①向量的坐標即此向量終點的坐標.②位置不同的向量其坐標可能相同.③一個向量的坐標等于它的終點坐標減去它的始點坐標.④相等的向量坐標一定相同.A.1個B.2個
2024-12-09 03:42
【總結(jié)】金太陽新課標資源網(wǎng)第二章《平面向量》測試(3)(新人教A版必修4)一、選擇題1.化簡得()A.B.C.D.2.設(shè)分別是與向的單位向量,則下列結(jié)論中正確的是()A.B.C.D.3.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個非零向量,滿足,則(4)若與
2025-04-07 02:59
【總結(jié)】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進行線性運算和數(shù)量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
2024-11-17 12:03
【總結(jié)】第一頁,編輯于星期六:點三十三分。,2.3.4平面向量共線的坐標表示,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十三分。,第四頁,編輯于星期六:點...
2025-10-13 18:49
【總結(jié)】平面向量測試題1.以下說法錯誤的是(?。〢.零向量與任一非零向量平行2.下列四式不能化簡為的是( ?。〢. B.C. D.3.已知=(3,4),=(5,12),與則夾角的余弦為()A.B.C.
2025-06-25 15:44