freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)-平行四邊形-綜合題含答案-資料下載頁

2025-04-02 00:26本頁面
  

【正文】 為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積求出答案;(3)利用平移的性質(zhì)進(jìn)而得出△ABC掃過的圖形是平行四邊形的面積.試題解析:(1)∵一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),∴A(4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90176。,∴BC=;(2)①如圖1,∵B(0,3),∴OB=3,∵AB=5,∴AO=ABBO=53=2,∴A(0,2).當(dāng)在x軸上方時(shí),點(diǎn)A的坐標(biāo)為(0,8),②如圖2,過點(diǎn)C作CF⊥OA與點(diǎn)F,∵△ABC為等腰直角三角形,∴∠BAC=90176。,AB=AC,∴∠BAO+∠CAF=90176。,∵∠OBA+∠BAO=90176。,∴∠CAF=∠OBA,在△AOB和△CFA中,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(7,4)∵A(4,0)設(shè)直線AC解析式為y=kx+b,將A與C坐標(biāo)代入得:,解得:,則直線AC解析式為y=x,∵將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為90176。時(shí),得到△BDE,∴∠ABD=90176。,∵∠CAB=90176。,∴∠ABD=∠CAB=90176。,∴AC∥BD,∴設(shè)直線BD的解析式為y=x+b1,把B(0,3)代入解析式的:b1=3,∴直線BD的解析式為y=x+3;③因?yàn)樾D(zhuǎn)過程中AC掃過的圖形是以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積,所以可得:S=;(3)將△ABC向右平移到△A′B′C′的位置,△ABC掃過的圖形是一個(gè)平行四邊形和三角形ABC,如圖3:將C點(diǎn)的縱坐標(biāo)代入一次函數(shù)y=x+3,求得C′的橫坐標(biāo)為,平行四邊CAA′C′的面積為(7+)4=,三角形ABC的面積為55=△ABC掃過的面積為:.考點(diǎn):幾何變換綜合題.14.如圖,現(xiàn)有一張邊長為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),求證:△PDH的周長是定值;(3)當(dāng)BE+CF的長取最小值時(shí),求AP的長.【答案】(1)證明見解析.(2)證明見解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設(shè)AP=x,利用折疊的性質(zhì)和勾股定理的知識(shí)用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90176。,∴∠EPH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。,BP=BP,在△ABP和△QBP中,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90176。,BH=BH,在△BCH和△BQH中,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長是定值.(3)解:如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176。,∴∠EFM=∠ABP.又∵∠A=∠EMF=90176。,在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當(dāng)x=2時(shí),BE+CF取最小值,∴AP=2.考點(diǎn):幾何變換綜合題.15.已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點(diǎn)M,CF與AD交于點(diǎn)N.(1)求證:△ABM≌△CDN;(2)矩形ABCD和矩形AECF滿足何種關(guān)系時(shí),四邊形 AMCN是菱形,證明你的結(jié)論.【答案】(1)證明見解析;(2)當(dāng)AB=AF時(shí),四邊形AMCN是菱形.證明見解析;【解析】試題分析:(1)由已知條件可得四邊形AMCN是平行四邊形,從而可得AM=CN,再由AB=CD,∠B=∠D=90176。,利用HL即可證明;(2)若四邊形AMCN為菱形,則有AM=AN,從已知可得∠BAM=∠FAN,又∠B=∠F=90176。,所以有△ABM≌△AFN,從而得AB=AF,因此當(dāng)AB=AF時(shí),四邊形AMCN是菱形.試題解析:(1)∵四邊形ABCD是矩形,∴∠B=∠D=90176。,AB=CD,AD∥BC.∵四邊形AECF是矩形,∴AE∥CF.∴四邊形AMCN是平行四邊形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.(2)當(dāng)AB=AF時(shí),四邊形AMCN是菱形.∵四邊形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90176。.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四邊形AMCN是平行四邊形,∴平行四邊形AMCN是菱形.考點(diǎn):1.矩形的性質(zhì);2.三角形全等的判定與性質(zhì);3.菱形的判定.
點(diǎn)擊復(fù)制文檔內(nèi)容
職業(yè)教育相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1