freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)平行四邊形的綜合題試題及答案解析-資料下載頁(yè)

2025-03-30 22:26本頁(yè)面
  

【正文】 的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).【答案】(1)NC∥AB;理由見(jiàn)解析;(2)∠ABC=∠ACN;理由見(jiàn)解析;(3);【解析】分析:(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60176。從而得到∠BAC∠CAM=∠MAN∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45176。,∠MAN=45176。,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.詳解:(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60176。,∴∠BAM=∠CAN,在△ABM與△ACN中, ,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60176。,∵∠ANC+∠ACN+∠CAN=∠ANC+60176。+∠CAN=180176。,∴∠ANC+∠MAN+∠BAM=∠ANC+60176。+∠CAN=∠BAN+∠ANC=180176。,∴CN∥AB; (2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180176。﹣∠ABC),∵AM=MN∴∠MAN=(180176。﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45176。,∠MAN=45176。,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45176。=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.點(diǎn)睛:本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問(wèn)題的關(guān)鍵.14.已知點(diǎn)O是△ABC內(nèi)任意一點(diǎn),連接OA并延長(zhǎng)到E,使得AE=OA,以O(shè)B,OC為鄰邊作?OBFC,連接OF與BC交于點(diǎn)H,再連接EF.(1)如圖1,若△ABC為等邊三角形,求證:①EF⊥BC;②EF=BC;(2)如圖2,若△ABC為等腰直角三角形(BC為斜邊),猜想(1)中的兩個(gè)結(jié)論是否成立?若成立,直接寫(xiě)出結(jié)論即可;若不成立,請(qǐng)你直接寫(xiě)出你的猜想結(jié)果;(3)如圖3,若△ABC是等腰三角形,且AB=AC=kBC,請(qǐng)你直接寫(xiě)出EF與BC之間的數(shù)量關(guān)系.【答案】(1)見(jiàn)解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】試題分析:(1)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等邊三角形的性質(zhì)得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可;(2)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等腰直角三角形的性質(zhì)得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可;(3)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等腰三角形的性質(zhì)和AB=AC=kBC得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可.試題解析:(1)連接AH,如圖1,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等邊三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線(xiàn),∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如圖2,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線(xiàn),∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如圖3,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2)BC2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線(xiàn),∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF=BC.考點(diǎn):四邊形綜合題.15.(本題滿(mǎn)分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過(guò)點(diǎn)B的直線(xiàn)折疊(折痕為BM),點(diǎn)A恰好落在CD邊的中點(diǎn)P處.(1)求矩形ABCD的邊AD的長(zhǎng).(2)若P為CD邊上的一個(gè)動(dòng)點(diǎn),折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設(shè)DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當(dāng)折痕MN的端點(diǎn)N在AB上時(shí),求當(dāng)△PCN為等腰三角形時(shí)x的值;②當(dāng)折痕MN的端點(diǎn)M在CD上時(shí),設(shè)折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長(zhǎng)度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過(guò)點(diǎn)N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進(jìn)行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當(dāng)點(diǎn)N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過(guò)N點(diǎn)作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當(dāng)點(diǎn)M在CD上時(shí),N在AB上,可得四邊形ANPM為菱形.設(shè)MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點(diǎn):函數(shù)的性質(zhì)、勾股定理.
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1