freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學復習平行四邊形專項綜合練習附答案-資料下載頁

2025-04-01 22:03本頁面
  

【正文】 由(1)同理可證AE=DF,∠DAE=∠CDF,延長FD交AE于點G,再由等角的余角相等可得AE⊥DF;(4)由于點P在運動中保持∠APD=90176。,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形,∴AD=DC,∠ADC=∠C=90176。.在△ADE和△DCF中,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90176。,∴∠DAE+∠ADF=90176。.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長FD交AE于點G,則∠CDF+∠ADG=90176。,∴∠ADG+∠DAE=90176。.∴AE⊥DF;(4)如圖:由于點P在運動中保持∠APD=90176。,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考點:四邊形的綜合知識.14.已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,以線段AB為直角邊在第二象限內(nèi)左等腰直角三角形ABC,∠BAC=90176。,如圖1所示.(1)填空:AB= ,BC= .(2)將△ABC繞點B逆時針旋轉,①當AC與x軸平行時,則點A的坐標是②當旋轉角為90176。時,得到△BDE,如圖2所示,求過B、D兩點直線的函數(shù)關系式.③在②的條件下,旋轉過程中AC掃過的圖形的面積是多少?(3)將△ABC向右平移到△A′B′C′的位置,點C′為直線AB上的一點,請直接寫出△ABC掃過的圖形的面積.【答案】(1):5;5;(2)①(0,﹣2);②直線BD的解析式為y=﹣x+3;③S=π;(3)△ABC掃過的面積為.【解析】試題分析:(1)根據(jù)坐標軸上的點的坐標特征,結合一次函數(shù)的解析式求出A、B兩點的坐標,利用勾股定理即可解答;(2)①因為B(0,3),所以OB=3,所以AB=5,所以AO=ABBO=53=2,所以A(0,2);②過點C作CF⊥OA與點F,證明△AOB≌△CFA,得到點C的坐標,求出直線AC解析式,根據(jù)AC∥BD,所以直線BD的解析式的k值與直線AC的解析式k值相同,設出解析式,即可解答.③利用旋轉的性質進而得出A,B,C對應點位置進而得出答案,再利用以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積求出答案;(3)利用平移的性質進而得出△ABC掃過的圖形是平行四邊形的面積.試題解析:(1)∵一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,∴A(4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90176。,∴BC=;(2)①如圖1,∵B(0,3),∴OB=3,∵AB=5,∴AO=ABBO=53=2,∴A(0,2).當在x軸上方時,點A的坐標為(0,8),②如圖2,過點C作CF⊥OA與點F,∵△ABC為等腰直角三角形,∴∠BAC=90176。,AB=AC,∴∠BAO+∠CAF=90176。,∵∠OBA+∠BAO=90176。,∴∠CAF=∠OBA,在△AOB和△CFA中,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(7,4)∵A(4,0)設直線AC解析式為y=kx+b,將A與C坐標代入得:,解得:,則直線AC解析式為y=x,∵將△ABC繞點B逆時針旋轉,當旋轉角為90176。時,得到△BDE,∴∠ABD=90176。,∵∠CAB=90176。,∴∠ABD=∠CAB=90176。,∴AC∥BD,∴設直線BD的解析式為y=x+b1,把B(0,3)代入解析式的:b1=3,∴直線BD的解析式為y=x+3;③因為旋轉過程中AC掃過的圖形是以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積,所以可得:S=;(3)將△ABC向右平移到△A′B′C′的位置,△ABC掃過的圖形是一個平行四邊形和三角形ABC,如圖3:將C點的縱坐標代入一次函數(shù)y=x+3,求得C′的橫坐標為,平行四邊CAA′C′的面積為(7+)4=,三角形ABC的面積為55=△ABC掃過的面積為:.考點:幾何變換綜合題.15.數(shù)學活動課上,老師給出如下問題:如圖,將等腰直角三角形紙片沿斜邊上的高AC剪開,得到等腰直角三角形△ABC與△EFD,將△EFD的直角頂點在直線BC上平移,在平移的過程中,直線AC與直線DE交于點Q,讓同學們探究線段BQ與AD的數(shù)量關系和位置關系.請你閱讀下面交流信息,解決所提出的問題.展示交流:小敏:滿足條件的圖形如圖甲所示圖形,延長BQ與AD交于點H.我們可以證明△BCQ≌△ACD,從而易得BQ=AD,BQ⊥AD.小慧:根據(jù)圖甲,當點F在線段BC上時,我們可以驗證小慧的說法是正確的.但當點F在線段CB的延長線上(如圖乙)或線段CB的反向延長線上(如圖丙)時,我對小慧說法的正確性表示懷疑.(1)請你幫助小慧進行分析,小敏的結論在圖乙、圖丙中是否成立?請說明理由.(選擇圖乙或圖丙的一種情況說明即可).(2)小慧思考問題的方式中,蘊含的數(shù)學思想是 .拓展延伸:根據(jù)你上面選擇的圖形,分別取AB、BD、DQ、AQ的中點M、N、P、T.則四邊形MNPT是什么樣的特殊四邊形?請說明理由.【答案】成立;分類討論思想;正方形.【解析】試題分析:利用等腰直角三角形的性質結合全等三角形的判定與性質得出BQ=AD,BQ⊥AD;利用已知條件分類得出,體現(xiàn)數(shù)學中的分類討論思想,拓展延伸:利用三角形中位線定理結合正方形的判定方法,首先得出四邊形MNPT是平行四邊形進而得出它是菱形,再求出一個內(nèi)角是90176。,即可得出答案.試題解析:(1)、成立,理由:如圖乙:由題意可得:∠FDE=∠QDC=∠ABC=∠BAC=45176。, 則DC=QC,AC=BC,在△ADC和△BQC中 ∵, ∴△ADC≌△BQC(SAS), ∴AD=BQ,∠DAC=∠QBC,延長AD交BQ于點F, 則∠ADC=∠BDF, ∴∠BFD=∠ACD=90176。, ∴AD⊥BQ;(2)、小慧思考問題的方式中,蘊含的數(shù)學思想是:分類討論思想;拓展延伸:四邊形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中點M、N、P、T, ∴MNAD,TPAD, ∴MNTP,∴四邊形MNPT是平行四邊形, ∵NPBQ,BQ=AD, ∴NP=MN, ∴平行四邊形MNPT是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD, ∴∠MNP=90176。, ∴四邊形MNPT是正方形.考點: 幾何變換綜合題
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1