freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)專題平行四邊形綜合檢測試卷及答案-資料下載頁

2025-04-01 22:02本頁面
  

【正文】 CE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),∴BE=DF.點睛:本題考查的是正方形的性質(zhì),熟知正方形的性質(zhì)及全等三角形的判定與性質(zhì)是解答此題的關(guān)鍵.13.如圖,P是邊長為1的正方形ABCD對角線BD上一動點(P與B、D不重合),∠APE=90176。,且點E在BC邊上,AE交BD于點F.(1)求證:①△PAB≌△PCB;②PE=PC;(2)在點P的運動過程中,的值是否改變?若不變,求出它的值;若改變,請說明理由;(3)設(shè)DP=x,當(dāng)x為何值時,AE∥PC,并判斷此時四邊形PAFC的形狀.【答案】(1)見解析;(2);(3)x=﹣1;四邊形PAFC是菱形.【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=BC,∠ABP=∠CBP176。,再根據(jù)PB=PB,即可證出△PAB≌△PCB,②根據(jù)∠PAB+∠PEB=180176。,∠PEC+∠PEB=180176。,得出∠PEC=∠PCB,從而證出PE=PC;(2)根據(jù)PA=PC,PE=PC,得出PA=PE,再根據(jù)∠APE=90176。,得出∠PAE=∠PEA=45176。,即可求出;(3)先求出∠CPE=∠PEA=45176。,從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=176。,由△PAB≌△PCB得出∠BPA=∠BPC=176。,PA=PC,從而證出AF=AP=PC,得出答案.試題解析:(1)①∵四邊形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45176。.∵PB=PB,∴△PAB≌△PCB (SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90176。,∴∠PAB+∠PEB=180176。,又∵∠PEC+∠PEB=180176。,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點P的運動過程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90176。,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45176。,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45176。,∴在△PEC中,∠PCE=∠PEC=(180176。﹣45176。)=176。.在△PBC中,∠BPC=(180176。﹣∠CBP﹣∠PCE)=(180176。﹣45176。﹣176。)=176。.∴∠BPC=∠PCE=176。,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=176。,由△PAB≌△PCB可知,∠BPA=∠BPC=176。,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四邊形PAFC是菱形.考點:四邊形綜合題.14.如圖①,在△ABC中,AB=7,tanA=,∠B=45176。.點P從點A出發(fā),沿AB方向以每秒1個單位長度的速度向終點B運動(不與點A、B重合),過點P作PQ⊥AB.交折線ACCB于點Q,以PQ為邊向右作正方形PQMN,設(shè)點P的運動時間為t(秒),正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位).(1)直接寫出正方形PQMN的邊PQ的長(用含t的代數(shù)式表示).(2)當(dāng)點M落在邊BC上時,求t的值.(3)求S與t之間的函數(shù)關(guān)系式.(4)如圖②,點P運動的同時,點H從點B出發(fā),沿BAB的方向做一次往返運動,在BA上的速度為每秒2個單位長度,在AB上的速度為每秒4個單位長度,當(dāng)點H停止運動時,點P也隨之停止,連結(jié)MH.設(shè)MH將正方形PQMN分成的兩部分圖形面積分別為SS2(平方單位)(0<S1<S2),直接寫出當(dāng)S2≥3S1時t的取值范圍.【答案】(1) PQ=7t.(2) t=.(3) 當(dāng)0<t≤時,S=.當(dāng)<t≤4,.當(dāng)4<t<7時,.(4)或或.【解析】試題分析:(1)分兩種情況討論:當(dāng)點Q在線段AC上時,當(dāng)點Q在線段BC上時.(2)根據(jù)AP+PN+NB=AB,列出關(guān)于t的方程即可解答;(3)當(dāng)0<t≤時,當(dāng)<t≤4,當(dāng)4<t<7時;(4)或或.試題解析:(1)當(dāng)點Q在線段AC上時,PQ=tanAAP=t.當(dāng)點Q在線段BC上時,PQ=7t.(2)當(dāng)點M落在邊BC上時,如圖③,由題意得:t+t+t=7,解得:t=.∴當(dāng)點M落在邊BC上時,求t的值為.(3)當(dāng)0<t≤時,如圖④,S=.當(dāng)<t≤4,如圖⑤,.當(dāng)4<t<7時,如圖⑥,.(4)或或..考點:四邊形綜合題.15.已知,以為邊在外作等腰,其中.(1)如圖①,若,求的度數(shù).(2)如圖②,,.①若,的長為______.②若改變的大小,但,的面積是否變化?若不變,求出其值;若變化,說明變化的規(guī)律.【答案】(1)120176。;(2)①2;②2【解析】試題分析:(1)根據(jù)SAS,可首先證明△AEC≌△ABD,再利用全等三角形的性質(zhì),可得對應(yīng)角相等,根據(jù)三角形的外角的定理,可求出∠BFC的度數(shù);(2)①如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90176。,EC=BD=6,因為BC=4,在Rt△BCE中,由勾股定理求BE即可;②過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK,仿照(2)利用旋轉(zhuǎn)法證明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出結(jié)論.試題解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60176。,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176。,故答案為120176。;(2)①如圖2,以AB為邊在△ABC外作正三角形ABE,連接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60176。,∠ABC=30176。,∴∠EBC=90176。.在RT△EBC中,EC=6,BC=4,∴EB===2∴AB=BE=2.②若改變α,β的大小,但α+β=90176。,△ABC的面積不變化,以下證明:如圖2,作AH⊥BC交BC于H,過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK.∵AH⊥BC于H,∴∠AHC=90176。.∵BE∥AH,∴∠EBC=90176。.∵∠EBC=90176。,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K為BE的中點,BE=2AH,∴BK=AH.∵BK∥AH,∴四邊形AKBH為平行四邊形.又∵∠EBC=90176。,∴四邊形AKBH為矩形.∠ABE=∠ACD,∴∠AKB=90176。.∴AK是BE的垂直平分線.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC與△BAD中∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE==2,∴AH=BE=,∴S△ABC=BC?AH=2考點:全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1