freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)-易錯(cuò)-難題篇及詳細(xì)答案-資料下載頁

2025-03-31 07:35本頁面
  

【正文】 國結(jié)”:(﹣3,0)、(﹣2,0)、(﹣1,0)(﹣1,1)、(0,0)、(1,0).考點(diǎn):反比例函數(shù)綜合題13.如圖,已知二次函數(shù)過(﹣2,4),(﹣4,4)兩點(diǎn).(1)求二次函數(shù)的解析式;(2)將沿x軸翻折,再向右平移2個(gè)單位,得到拋物線,直線y=m(m>0)交于M、N兩點(diǎn),求線段MN的長度(用含m的代數(shù)式表示);(3)在(2)的條件下,、交于A、B兩點(diǎn),如果直線y=m與、的圖象形成的封閉曲線交于C、D兩點(diǎn)(C在左側(cè)),直線y=﹣m與、的圖象形成的封閉曲線交于E、F兩點(diǎn)(E在左側(cè)),求證:四邊形CEFD是平行四邊形.【答案】(1);(2);(3)證明見解析.【解析】試題分析:(1)根據(jù)待定系數(shù)法即可解決問題.(2)先求出拋物線y2的頂點(diǎn)坐標(biāo),再求出其解析式,利用方程組以及根與系數(shù)關(guān)系即可求出MN.(3)用類似(2)的方法,分別求出CD、EF即可解決問題.試題解析:(1)∵二次函數(shù)過(﹣2,4),(﹣4,4)兩點(diǎn),∴,解得:,∴二次函數(shù)的解析式.(2)∵=,∴頂點(diǎn)坐標(biāo)(﹣3,),∵將沿x軸翻折,再向右平移2個(gè)單位,得到拋物線,∴拋物線的頂點(diǎn)坐標(biāo)(﹣1,),∴拋物線為,由,消去y整理得到,設(shè),是它的兩個(gè)根,則MN===;(3)由,消去y整理得到,設(shè)兩個(gè)根為,則CD===,由,消去y得到,設(shè)兩個(gè)根為,則EF===,∴EF=CD,EF∥CD,∴四邊形CEFD是平行四邊形.考點(diǎn):二次函數(shù)綜合題.14.如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P做x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?(3)點(diǎn)P在線段AB運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.【答案】(1)y=﹣x2+x+2;(2)m=﹣1或m=3時(shí),四邊形DMQF是平行四邊形;(3)點(diǎn)Q的坐標(biāo)為(3,2)或(﹣1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.【解析】分析:(1)待定系數(shù)法求解可得;(2)先利用待定系數(shù)法求出直線BD解析式為y=x2,則Q(m,m2+m+2)、M(m,m2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90176。,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時(shí)m的值;②∠BQM=90176。,此時(shí)點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,易得點(diǎn)Q坐標(biāo).詳解:(1)由拋物線過點(diǎn)A(1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x4),將點(diǎn)C(0,2)代入,得:4a=2,解得:a=,則拋物線解析式為y=(x+1)(x4)=x2+x+2;(2)由題意知點(diǎn)D坐標(biāo)為(0,2),設(shè)直線BD解析式為y=kx+b,將B(4,0)、D(0,2)代入,得:,解得:,∴直線BD解析式為y=x2,∵QM⊥x軸,P(m,0),∴Q(m,m2+m+2)、M(m,m2),則QM=m2+m+2(m2)=m2+m+4,∵F(0,)、D(0,2),∴DF=,∵QM∥DF,∴當(dāng)m2+m+4=時(shí),四邊形DMQF是平行四邊形,解得:m=1(舍)或m=3,即m=3時(shí),四邊形DMQF是平行四邊形;(3)如圖所示:∵QM∥DF,∴∠ODB=∠QMB,分以下兩種情況:①當(dāng)∠DOB=∠MBQ=90176。時(shí),△DOB∽△MBQ,則,∵∠MBQ=90176。,∴∠MBP+∠PBQ=90176。,∵∠MPB=∠BPQ=90176。,∴∠MBP+∠BMP=90176。,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=m2=4,當(dāng)m=4時(shí),點(diǎn)P、Q、M均與點(diǎn)B重合,不能構(gòu)成三角形,舍去,∴m=3,點(diǎn)Q的坐標(biāo)為(3,2);②當(dāng)∠BQM=90176。時(shí),此時(shí)點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,此時(shí)m=1,點(diǎn)Q的坐標(biāo)為(1,0);綜上,點(diǎn)Q的坐標(biāo)為(3,2)或(1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.點(diǎn)睛:本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運(yùn)用.15.如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(1)求此二次函數(shù)解析式;(2)點(diǎn)D為拋物線的頂點(diǎn),試判斷△BCD的形狀,并說明理由;(3)將直線BC向上平移t(t0)個(gè)單位,平移后的直線與拋物線交于M,N兩點(diǎn)(點(diǎn)M在y軸的右側(cè)),當(dāng)△AMN為直角三角形時(shí),求t的值.【答案】(1);(2)△BCD為直角三角形,理由見解析;(3)當(dāng)△AMN為直角三角形時(shí),t的值為1或4.【解析】【分析】(1)根據(jù)點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出二次函數(shù)解析式;(2)利用配方法及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可求出點(diǎn)C、D的坐標(biāo),利用兩點(diǎn)間的距離公式可求出CD、BD、BC的長,由勾股定理的逆定理可證出△BCD為直角三角形;(3)根據(jù)點(diǎn)B、C的坐標(biāo),利用待定系數(shù)法可求出直線BC的解析式,進(jìn)而可找出平移后直線的解析式,聯(lián)立兩函數(shù)解析式成方程組,通過解方程組可找出點(diǎn)M、N的坐標(biāo),利用兩點(diǎn)間的距離公式可求出AMANMN2的值,分別令三個(gè)角為直角,利用勾股定理可得出關(guān)于t的無理方程,解之即可得出結(jié)論.【詳解】(1)將、代入,得:,解得:,此二次函數(shù)解析式為.(2)為直角三角形,理由如下:,頂點(diǎn)的坐標(biāo)為.當(dāng)時(shí),點(diǎn)的坐標(biāo)為.點(diǎn)的坐標(biāo)為,,.,為直角三角形.(3)設(shè)直線的解析式為,將,代入,得:,解得:,直線的解析式為,將直線向上平移個(gè)單位得到的直線的解析式為.聯(lián)立新直線與拋物線的解析式成方程組,得:,解得:,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,.點(diǎn)的坐標(biāo)為,,.為直角三角形,分三種情況考慮:①當(dāng)時(shí),有,即,整理,得:,解得:,(不合題意,舍去);②當(dāng)時(shí),有,即,整理,得:,解得:,(不合題意,舍去);③當(dāng)時(shí),有,即,整理,得:.,該方程無解(或解均為增解).綜上所述:當(dāng)為直角三角形時(shí),的值為1或4.【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、勾股定理以及勾股定理的逆定理,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點(diǎn)間的距離公式結(jié)合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90176。、∠AMN=90176。及∠ANM=90176。三種情況考慮.
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1