freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)篇附答案解析-資料下載頁(yè)

2025-03-31 07:11本頁(yè)面
  

【正文】 5),B(5,0),然后利用待定系數(shù)法求拋物線解析式;(2)①先解方程x2+6x5=0得A(1,0),再判斷△OCB為等腰直角三角形得到∠OBC=∠OCB=45176。,則△AMB為等腰直角三角形,所以AM=2,接著根據(jù)平行四邊形的性質(zhì)得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,利用∠PDQ=45176。得到PD=PQ=4,設(shè)P(m,m2+6m5),則D(m,m5),討論:當(dāng)P點(diǎn)在直線BC上方時(shí),PD=m2+6m5(m5)=4;當(dāng)P點(diǎn)在直線BC下方時(shí),PD=m5(m2+6m5),然后分別解方程即可得到P點(diǎn)的橫坐標(biāo);②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,2),AC的解析式為y=5x5,E點(diǎn)坐標(biāo)為(,),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=x+b,把E(,)代入求出b得到直線EM1的解析式為y=x,則解方程組得M1點(diǎn)的坐標(biāo);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對(duì)稱點(diǎn)M2,如圖2,利用對(duì)稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x5),根據(jù)中點(diǎn)坐標(biāo)公式得到3=,然后求出x即可得到M2的坐標(biāo),從而得到滿足條件的點(diǎn)M的坐標(biāo).詳解:(1)當(dāng)x=0時(shí),y=x﹣5=﹣5,則C(0,﹣5),當(dāng)y=0時(shí),x﹣5=0,解得x=5,則B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴拋物線解析式為y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,則A(1,0),∵B(5,0),C(0,﹣5),∴△OCB為等腰直角三角形,∴∠OBC=∠OCB=45176。,∵AM⊥BC,∴△AMB為等腰直角三角形,∴AM=AB=4=2,∵以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,則∠PDQ=45176。,∴PD=PQ=2=4,設(shè)P(m,﹣m2+6m﹣5),則D(m,m﹣5),當(dāng)P點(diǎn)在直線BC上方時(shí),PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,當(dāng)P點(diǎn)在直線BC下方時(shí),PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,綜上所述,P點(diǎn)的橫坐標(biāo)為4或或;②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,∵M(jìn)1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB為等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式為y=5x﹣5,E點(diǎn)坐標(biāo)為(,﹣,設(shè)直線EM1的解析式為y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直線EM1的解析式為y=﹣x﹣解方程組得,則M1(,﹣);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對(duì)稱點(diǎn)M2,如圖2,則∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x﹣5),∵3=∴x=,∴M2(,﹣).綜上所述,點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).點(diǎn)睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、等腰直角的判定與性質(zhì)和平行四邊形的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問題.14.拋物線,若a,b,c滿足b=a+c,則稱拋物線為“恒定”拋物線.(1)求證:“恒定”拋物線必過x軸上的一個(gè)定點(diǎn)A;(2)已知“恒定”拋物線的頂點(diǎn)為P,與x軸另一個(gè)交點(diǎn)為B,是否存在以Q為頂點(diǎn),與x軸另一個(gè)交點(diǎn)為C的“恒定”拋物線,使得以PA,CQ為邊的四邊形是平行四邊形?若存在,求出拋物線解析式;若不存在,請(qǐng)說明理由.【答案】(1)證明見試題解析;(2),或.【解析】試題分析:(1)由“恒定”拋物線的定義,即可得出拋物線恒過定點(diǎn)(﹣1,0);(2)求出拋物線的頂點(diǎn)坐標(biāo)和B的坐標(biāo),由題意得出PA∥CQ,PA=CQ;存在兩種情況:①作QM⊥AC于M,則QM=OP=,證明Rt△QMC≌Rt△POA,MC=OA=1,得出點(diǎn)Q的坐標(biāo),設(shè)拋物線的解析式為,把點(diǎn)A坐標(biāo)代入求出a的值即可;②頂點(diǎn)Q在y軸上,此時(shí)點(diǎn)C與點(diǎn)B重合;證明△OQC≌△OPA,得出OQ=OP=,得出點(diǎn)Q坐標(biāo),設(shè)拋物線的解析式為,把點(diǎn)C坐標(biāo)代入求出a的值即可.試題解析:(1)由“恒定”拋物線,得:b=a+c,即a﹣b+c=0,∵拋物線,當(dāng)x=﹣1時(shí),y=0,∴“恒定”拋物線必過x軸上的一個(gè)定點(diǎn)A(﹣1,0);(2)存在;理由如下:∵“恒定”拋物線,當(dāng)y=0時(shí),解得:x=177。1,∵A(﹣1,0),∴B(1,0);∵x=0時(shí),y=,∴頂點(diǎn)P的坐標(biāo)為(0,),以PA,CQ為邊的平行四邊形,PA、CQ是對(duì)邊,∴PA∥CQ,PA=CQ,∴存在兩種情況:①如圖1所示:作QM⊥AC于M,則QM=OP=,∠QMC=90176。=∠POA,在Rt△QMC和Rt△POA中,∵CQ=PA,QM=OP,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵點(diǎn)A和點(diǎn)C是拋物線上的對(duì)稱點(diǎn),∴AM=MC=1,∴點(diǎn)Q的坐標(biāo)為(﹣2,),設(shè)以Q為頂點(diǎn),與x軸另一個(gè)交點(diǎn)為C的“恒定”拋物線的解析式為,把點(diǎn)A(﹣1,0)代入得:a=,∴拋物線的解析式為:,即;②如圖2所示:頂點(diǎn)Q在y軸上,此時(shí)點(diǎn)C與點(diǎn)B重合,∴點(diǎn)C坐標(biāo)為(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,∵∠OQC=∠OPA,∠COQ=∠AOP,CQ=PA,∴△OQC≌△OPA(AAS),∴OQ=OP=,∴點(diǎn)Q坐標(biāo)為(0,),設(shè)以Q為頂點(diǎn),與x軸另一個(gè)交點(diǎn)為C的“恒定”拋物線的解析式為,把點(diǎn)C(1,0)代入得:a=,∴拋物線的解析式為:;綜上所述:存在以Q為頂點(diǎn),與x軸另一個(gè)交點(diǎn)為C的“恒定”拋物線,使得以PA,CQ為邊的四邊形是平行四邊形,拋物線的解析式為:,或.考點(diǎn):1.二次函數(shù)綜合題;2.壓軸題;3.新定義;4.存在型;5.分類討論.15.一次函數(shù)y=x的圖象如圖所示,它與二次函數(shù)y=ax2-4ax+c的圖象交于A、B兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)C.(1)求點(diǎn)C的坐標(biāo);(2)設(shè)二次函數(shù)圖象的頂點(diǎn)為D.①若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.【答案】(1)點(diǎn)C(2,);(2)①y=x2-x; ②y=-x2+2x+.【解析】試題分析:(1)求得二次函數(shù)y=ax2-4ax+c對(duì)稱軸為直線x=2,把x=2代入y=x求得y=,即可得點(diǎn)C的坐標(biāo);(2)①根據(jù)點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱即可得點(diǎn)D的坐標(biāo),并且求得CD的長(zhǎng),設(shè)A(m,m) ,根據(jù)S△ACD=3即可求得m的值,即求得點(diǎn)A的坐標(biāo),=ax2-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達(dá)式.②設(shè)A(m,m)(m2),過點(diǎn)A作AE⊥CD于E,則AE=2-m,CE=-m,根據(jù)勾股定理用m表示出AC的長(zhǎng),根據(jù)△ACD的面積等于10可求得m的值,即可得A點(diǎn)的坐標(biāo),分兩種情況:第一種情況,若a>0,則點(diǎn)D在點(diǎn)C下方,求點(diǎn)D的坐標(biāo);第二種情況,若a<0,則點(diǎn)D在點(diǎn)C上方,求點(diǎn)D的坐標(biāo),分別把A、D的坐標(biāo)代入y=ax2-4ax+c即可求得函數(shù)表達(dá)式.試題解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函數(shù)圖像的對(duì)稱軸為直線x=2.當(dāng)x=2時(shí),y=x=,∴C(2,).(2)①∵點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,∴D(2,-),∴CD=3.設(shè)A(m,m) (m2),由S△ACD=3,得3(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②設(shè)A(m,m)(m2),過點(diǎn)A作AE⊥CD于E,則AE=2-m,CE=-m,AC==(2-m),∵CD=AC,∴CD=(2-m).由S△ACD=10得(2-m)2=10,解得m=-2或m=6(舍去),∴m=-2.∴A(-2,-),CD=5.若a>0,則點(diǎn)D在點(diǎn)C下方,∴D(2,-),由A(-2,-)、D(2,-)得解得∴y=x2-x-3.若a<0,則點(diǎn)D在點(diǎn)C上方,∴D(2,),由A(-2,-)、D(2,)得解得∴y=-x2+2x+.考點(diǎn):二次函數(shù)與一次函數(shù)的綜合題.
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1