freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇(1)-資料下載頁

2025-03-31 07:34本頁面
  

【正文】 E=A′D+DC′,則當(dāng)A′、D、C′三點(diǎn)共線時,CD+AE=A′D+DC′最小,周長也最小,即可求解;(3)S△PCB:S△PCA=EB(yCyP):AE(yCyP)=BE:AE,即可求解.【詳解】(1)∵OB=OC,∴點(diǎn)B(3,0),則拋物線的表達(dá)式為:y=a(x+1)(x3)=a(x22x3)=ax22ax3a,故3a=3,解得:a=1,故拋物線的表達(dá)式為:y=x2+2x+3…①;對稱軸為:直線(2)ACDE的周長=AC+DE+CD+AE,其中AC=、DE=1是常數(shù),故CD+AE最小時,周長最小,取點(diǎn)C關(guān)于函數(shù)對稱點(diǎn)C(2,3),則CD=C′D,取點(diǎn)A′(1,1),則A′D=AE,故:CD+AE=A′D+DC′,則當(dāng)A′、D、C′三點(diǎn)共線時,CD+AE=A′D+DC′最小,周長也最小,四邊形ACDE的周長的最小值=AC+DE+CD+AE=+1+A′D+DC′=+1+A′C′=+1+;(3)如圖,設(shè)直線CP交x軸于點(diǎn)E,直線CP把四邊形CBPA的面積分為3:5兩部分,又∵S△PCB:S△PCA=EB(yCyP):AE(yCyP)=BE:AE,則BE:AE,=3:5或5:3,則AE=或,即:點(diǎn)E的坐標(biāo)為(,0)或(,0),將點(diǎn)E、C的坐標(biāo)代入一次函數(shù)表達(dá)式:y=kx+3,解得:k=6或2,故直線CP的表達(dá)式為:y=2x+3或y=6x+3…②聯(lián)立①②并解得:x=4或8(不合題意值已舍去),故點(diǎn)P的坐標(biāo)為(4,5)或(8,45).【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、圖象面積計算、點(diǎn)的對稱性等,其中(1),通過確定點(diǎn)A′點(diǎn)來求最小值,是本題的難點(diǎn).14.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個交點(diǎn)為A,頂點(diǎn)為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由;(3)當(dāng)0<x<3時,在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長,進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點(diǎn)的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當(dāng)MC=PC時,則有=2,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時M(2,7);③當(dāng)MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時,△CBE的面積最大,此時E點(diǎn)坐標(biāo)為(,),即當(dāng)E點(diǎn)坐標(biāo)為(,)時,△CBE的面積最大.考點(diǎn):二次函數(shù)綜合題.15.如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點(diǎn)A(1,0),B(3,0),交y軸于點(diǎn)C.(1)求這個二次函數(shù)的表達(dá)式;(2)點(diǎn)P是直線BC下方拋物線上的一動點(diǎn),求△BCP面積的最大值;(3)直線x=m分別交直線BC和拋物線于點(diǎn)M,N,當(dāng)△BMN是等腰三角形時,直接寫出m的值.【答案】(1)這個二次函數(shù)的表達(dá)式是y=x2﹣4x+3;(2)S△BCP最大=;(3)當(dāng)△BMN是等腰三角形時,m的值為,﹣,1,2.【解析】分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)平行于y軸直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PE的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;(3)根據(jù)等腰三角形的定義,可得關(guān)于m的方程,根據(jù)解方程,可得答案.詳解:(1)將A(1,0),B(3,0)代入函數(shù)解析式,得,解得,這個二次函數(shù)的表達(dá)式是y=x24x+3;(2)當(dāng)x=0時,y=3,即點(diǎn)C(0,3),設(shè)BC的表達(dá)式為y=kx+b,將點(diǎn)B(3,0)點(diǎn)C(0,3)代入函數(shù)解析式,得,解這個方程組,得 直線BC的解析是為y=x+3,過點(diǎn)P作PE∥y軸,交直線BC于點(diǎn)E(t,t+3),PE=t+3(t24t+3)=t2+3t,∴S△BCP=S△BPE+SCPE=(t2+3t)3=(t)2+,∵<0,∴當(dāng)t=時,S△BCP最大=.(3)M(m,m+3),N(m,m24m+3)MN=m23m,BM=|m3|,當(dāng)MN=BM時,①m23m=(m3),解得m=,②m23m=(m3),解得m=當(dāng)BN=MN時,∠NBM=∠BMN=45176。,m24m+3=0,解得m=1或m=3(舍)當(dāng)BM=BN時,∠BMN=∠BNM=45176。,(m24m+3)=m+3,解得m=2或m=3(舍),當(dāng)△BMN是等腰三角形時,m的值為,,1,2.點(diǎn)睛:本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),解(3)的關(guān)鍵是利用等腰三角形的定義得出關(guān)于m的方程,要分類討論,以防遺漏.
點(diǎn)擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1