freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx19學(xué)年市第學(xué)高一上學(xué)期期中數(shù)學(xué)試題解析版-資料下載頁

2025-01-13 22:01本頁面
  

【正文】 查了判斷并證明函數(shù)的單調(diào)性,考查了利用函數(shù)的單調(diào)性求解不等式問題,考查了數(shù)學(xué)運算能力. 21.已知函數(shù). (1)已知f(x)的圖象關(guān)于原點對稱,求實數(shù)的值; (2)若,已知常數(shù)滿足:對任意恒成立,求實數(shù)的取值范圍. 【答案】(1);(2). 【解析】試題分析:(1)函數(shù)的定義域是,函數(shù)圖象關(guān)于原點對稱,得函數(shù)是奇函數(shù),即解出即可,需驗證函數(shù)是奇函數(shù);(2)此題是個恒成立問題,求取參量的取值范圍,對此我們一般情況都是參變分離,化成,令,由于是恒成立問題,則有,只需要求取即可. 試題解析:(1)定義域為,又知函數(shù)為R上的奇函數(shù),則a= 下面證明時是奇函數(shù) 對定義域R上的每一個x都成立, ∴為R上的奇函數(shù). ∴存在實數(shù),使函數(shù)為奇函數(shù). 另解:定義域為,又知函數(shù)為R上的奇函數(shù), 對定義域R上的每一個x都成立. ∴ ∴ =, ∴. ∴存在實數(shù),使函數(shù)為奇函數(shù). (2)若,則, , 由對恒成立,得, ∵當(dāng)時, ∴對恒成立, 易知,關(guān)于x的函數(shù)在上為增函數(shù),令 在上為增, ∴. 【考點】函數(shù)奇偶性;指數(shù)函數(shù);求取函數(shù)最值的方法. 【方法點晴】在(1)中利用奇函數(shù)的性質(zhì),在利用的時候一定注意定義域,除此之外,還可以直接根據(jù)奇函數(shù)的定義:,進(jìn)行代入,亦可求出答案;在(2)中的恒成立問題是個經(jīng)典題型,對此我們分為如下幾種類型: 已知在定義域上恒成立則有: 1; 2; 3; 如果帶有參量,例如本題,我們采用參變分離的方法進(jìn)行轉(zhuǎn)化,這種方法非常常見,請大家一定要掌握. 22.已知函數(shù). (1)求的單調(diào)區(qū)間; (2)若,存在,使得,求實數(shù)的取值范圍. 【答案】(1)見解析 (2) . 【解析】(1)根據(jù)的不同取值,結(jié)合絕對值的性質(zhì),分類討論求出函數(shù)的單調(diào)區(qū)間; (2) 求出二次函數(shù)的對稱軸,根據(jù)對稱軸和所給的區(qū)間的位置進(jìn)行分類討論,即可求出實數(shù)的取值范圍. 【詳解】 (1)當(dāng)時, ,因此函數(shù)在上單調(diào)遞增,在上單調(diào)遞減; 當(dāng)時, , 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減; 當(dāng)時, , 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減; (2)二次函數(shù)的對稱軸為:. ①當(dāng)時,二次函數(shù)是單調(diào)減函數(shù),因此有: , 所以一元二次方程在區(qū)間上有兩不等根,則有 ; ②當(dāng)時,二次函數(shù)是單調(diào)增函數(shù),因此有: ,所以可以看成一元二次方程兩根,則,有; ③當(dāng)時, ,所以由 函數(shù)的最大值是中的一個值, . ①若時,有,此時,所以或 (i)若時, (ii)若,由(舍): ②若時,有,此時, 因此有, 根據(jù) 綜上所述:實數(shù)的取值范圍是. 【點睛】 本題考查了二次函數(shù)的單調(diào)性,考查了已知二次函數(shù)的定義域、值域求參數(shù)取值范圍問題.此資料由網(wǎng)絡(luò)收集而來,如有侵權(quán)請告知上傳者立即刪除。資料共分享,我們負(fù)責(zé)傳遞知
點擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1